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Abstract
Ferulic acid is being screened in preclinical settings to combat various neurological disorders. It is a naturally occurring 
dietary flavonoid commonly found in grains, fruits, and vegetables such as rice, wheat, oats, tomatoes, sweet corn etc., which 
exhibits protective effects against a number of neurological diseases such as epilepsy, depression, ischemia-reperfusion injury, 
Alzheimer’s disease, and Parkinson’s disease. Ferulic acid prevents and treats different neurological diseases pertaining to 
its potent anti-oxidative and anti-inflammatory effects, beside modulating unique neuro-signaling pathways. It stays in the 
bloodstream for longer periods than other dietary polyphenols and antioxidants and easily crosses blood brain barrier. The 
use of novel drug delivery systems such as solid-lipid nanoparticles (SLNs) or its salt forms (sodium ferulate, ethyl ferulate, 
and isopentyl ferulate) further enhance its bioavailability and cerebral penetration. Based on reported studies, ferulic acid 
appears to be a promising molecule for treatment of neurological disorders; however, more preclinical (in vitro and in vivo) 
mechanism-based studies should be planned and conceived followed by its testing in clinical settings.
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Introduction

Plant-based drugs are being explored for treatment of neuro-
logical disorders. In the last five decades, preclinical studies 
have shown numerous evidences indicating the beneficial 
role of phytochemicals in prophylaxis and treatment of neu-
rological diseases [1–5]. Polyphenols and carotenoids are 
two important categories of phytochemicals, contributing 
maximally towards the medicinal value of plants [6]. In 

recent years, various studies have reported the neuroprotec-
tive action of polyphenols and phenolic acids such as ferulic 
acid, caffeic acid, syringic acid, ellagic acid, sinapic acid, 
p-coumaric acid, tannic acid, rosmarinic acid, and chloro-
genic acid [7]. Among these, ferulic acid is of great interest 
for neuroscientists because it has good bioavailability, stays 
in blood for longer period of time, permeable to blood-brain 
barrier (BBB) and exhibits multiple neurotherapeutic effects 
[8]. Beside its antioxidant and anti-inflammatory effects, 
ferulic acid modulates various neuro-signaling pathways 
via interaction with multiple receptors or enzymes [9, 10]. 
It also modulates the expression of various proinflamma-
tory cytokines, and pro-apoptotic signals which explains its 
neurotherapeutic effects [11, 12].

Ferulic acid belongs to the class of hydroxycinnamic acid, 
and have broad spectrum of pharmacotherapeutic effects 
[13, 14] (Fig. 1). An animal study showed that ferulic acid 
(521 µmol/kg p.o) administered to rats was detectable in 
the brain in the concentration range of 2.6 µg/g of tissue, 
≈ 13.39 nmol/ml. Sixty minutes following administration, 
brain concentration decreased only by 50 % [15]. Ferulic 
acid has been used and approved in traditional Chinese sys-
tem of medicine for treatment of cardiovascular diseases 
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such as coronary heart disease (CHD), atherosclerosis, 
pulmonary heart disease, and hypertension for decades 
[16–32]. Sodium ferulate (0.08 g/day i.v.) administered for 
3 to 7 days in CHD patients (n = 94) decreased symptoms of 
angina pectoris [17]. Sodium ferulate as an adjuvant ther-
apy improved therapeutic effects of various cardiovascular 
drugs such as nitrates, β receptor antagonists, and calcium 
channel blockers (improved heart functions, normalized 
myocardial enzyme levels, reduced the incidence of other 
cardiovascular disease such as heart failure or arrhythmias) 
[25–30]. Ferulic acid showed cardioprotective effects per-
taining to its modulatory effects on nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) and NF-
E2-related factor 2 (Nrf2)/Heme oxygenase (HO)-1 system 
pathway [33, 34]. These inflammatory signaling pathways 
are also reported in progression and development of neu-
rological disorders [35–41]. Therefore, due to its potent 
anti-inflammatory effects as well as modulatory effects on 
multiple signaling pathways, various studies elucidated the 
neuroprotective effects of ferulic acid in different animal 
models of neurodegenerative diseases [42–44]. As a com-
mon pathological mechanism in multiple neurodegenerative 
diseases, ferulic acid mitigates cascades of oxidative stress 
and neuroinflammation. Phenolic and hydroxyl groups in 
its structure donates electrons to quench the free radicals 
and imbibe it with antioxidant potential. Recently, a study 
reported modulatory effects of ethyl ferulate (15 µM) to 
HO-1 expression in neurons and astrocytes [45]. Although, 
the study did not identify the specific cascade of events that 
triggers HO-1 up-regulation, it speculated the involvement 
of the Nrf2 pathway. However, ethyl ferulate at high concen-
tration (50 µM) gave contrasting results (cytotoxic effects) 
[46], which could partially be explained by possible HO-1 
gene repression [47].

Patients with major depressive disorder (MDD) and ani-
mal studies have shown decreased monoamine (serotonin, 
dopamine, norepinephrine) and brain derived neurotrophic 
factor (BDNF) levels in the hippocampus [48–52]. Ferulic 
acid treatment restored monoamine levels, BDNF levels, 
and decreased depression-like phenotypes in corticoster-
one treated mice (an animal model of depression) [53]. 

Ferulic acid was also neuroprotective against monosodium 
glutamate (MSG) induced excitotoxic damage on devel-
oping fetal mouse brain through its N-methyl-D-aspartate 
(NMDA) receptor inhibition properties [54]. Studies have 
also reported a key role of ferulic acid in epileptogenesis and 
development of seizures [55]. Ferulic acid also attenuated 
the cyclooxygenase-2 (COX-2) enzyme levels, inducible 
nitric oxide synthase (iNOS), proinflammatory cytokines 
(Interleukin 1β [IL-1β], Tumor Necrosis Factor-α [TNF-α]) 
and myeloid differentiation primary response 88 (MyD88) 
expression, and has shown neuroprotective potential in 
various experimental models of Parkinson’s disease (PD) 
[56–58]. Similarly, in Alzheimer’s disease (AD), in vitro 
and in  vivo studies showed that tacrine-6-ferulic acid 
(T6FA), a multifunctional semi-synthetic dimer exhibits 
acetylcholinesterase (AChE) inhibitor activity and prevented 
deposition of Aβ- peptide and other pathological changes. 
These semi-synthetic molecules are result of an interesting 
approach to increase bioavailability as well as to combat 
adverse effects associated with available drugs for treatment 
of AD [59]. Thus, based on these studies, we reviewed the 
therapeutic potential of ferulic acid and elaborated its plei-
otropic neuroprotective mechanisms in major neurological 
disorders such as epilepsy, depression, cerebral ischemia, 
AD, and PD in more detail.

Methodology

The scientific literature was collected using online search 
engines and databases such as Science Direct, Scopus, Pub-
Med, and Google Scholar until November 2020. The search 
was conducted using keywords “Ferulic acid”, “Neurode-
generative disorders”, “Depression”, “Parkinson’s disease”, 
“Alzheimer’s disease”, “Epilepsy”, “Ischemia-reperfusion 
injury” in combination with ferulic acid or alone.

Ferulic Acid and Epilepsy

Epilepsy is a neurological disorder characterized by an 
enduring predisposition to generate epileptic seizures, and 
by the neurobiological, cognitive, psychological, and social 
consequences of this condition [60]. Epileptogenic events 
such as traumatic brain injury or status epilepticus triggers 
neuroinflammatory and apoptotic pathways, which subserves 
multiple neuroplastic changes leading to development of sei-
zures [61–63]. Phytoconstituents such as ferulic acid, which 
have antioxidant and anti-inflammatory potential showed 
putative antiepileptic and antiepileptogenic effects [64, 65].

In line with this, ferulic acid attenuated epileptogenesis 
and showed neuroprotective effects in the pentylenetetra-
zole (PTZ) kindling induced model of chronic epilepsy. 

Fig. 1  Structure of ferulic acid and sodium ferulate

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Neurochemical Research 

1 3

Treatment decreased gap junction alpha-1 (GJA1) or con-
nexin 43 protein expression in the brain [66]. Connexins are 
a family of 21 protein isoforms, 11 of which are expressed 
in the central nervous system (CNS). These proteins form 
hemichannels, also known as connexons and channels (gap 
junctions/electric synapses) that enables smooth functional 
and metabolic coupling between neurons and astrocytes. 
Epileptogenic events increase opening of hemichannels in 
astrocytes, enable gliotransmitter release and increase syn-
chronization between coupled neurons involved in seizure 
initiation and propagation. Pharmacological blockade of 
these channels and hemichannels using GJA-1 antagonists 
have shown anti-epileptic effects [67, 68].

In another study, isopentyl ferulate (25, 50 and 75 mg/
kg, i.p.) also showed anti-epileptic effect in two acute mod-
els of seizures induced by pilocarpine and PTZ. Flumaze-
nil blocked its antiepileptic potential, suggesting GABA-A 
modulatory effects of ferulic acid [69]. Ferulic acid has also 
been reported to inhibit monoamine oxidase-A (MAO-A) 
activity, increasing synaptic levels of monoamines, which 
may also explain its potent anti-epileptic effect reported in 
PTZ post kindled epileptic animals [70]. Monoamines are 
neuroactive substances in CNS that are capable of regulat-
ing the seizure initiation and propagation [71, 72]. Elevated 
levels of monoamines in the brain have been speculated to 
exert an anticonvulsant action [73, 74] and deficiencies in 
monoamines are also implicated in different types of sei-
zures [75–78] possibly via lowering seizure threshold [79]. 
Ferulic acid (60 mg/kg) has also been reported to modulate 
apoptotic pathways, another possible pathway explaing its 
antiepileptic effect observed in PTZ kindling induced epi-
lepsy model [80].

Methanolic extract of Ipomoea reniformis (MEIR) with 
principle constituents (sinapic and ferulic acid) have also 
demonstrated potent anti-epileptic effect against isonicotinyl 
hydrazine (INH) and PTZ-induced acute seizures in mice. 
MEIR (400 mg/kg) significantly increased mean latency 
time to myoclonic jerks and generalized tonic-clonic sei-
zures (GTCS) observed post-PTZ injection, which was com-
parable to diazepam, a standard antiepilptic drug (AED). 
However, MEIR pretreatment did not stop animals predis-
position towards GTCS [81]. Thus, all available reports con-
sistently showcase the antiepileptic and anti-epileptogenic 
potential of ferulic acid. This molecule may have signifi-
cant advantage over available marketed anti-epileptic drugs, 
which are associated with various adverse effects such as 
depression, cognitive deficit, anxiety, gingival hyperplasia, 
osteomalacia, megaloblastic anemia, hirsutism, leucopenia, 
thrombocytopenia, pancytopenia, teratogenic and liver cells 
toxicity [82].

In another interesting study, ferulic acid was reported as a 
safe adjuvant therapy for management of epilepsy associated 
depression. Epilepsy itself and use of AEDs is associated 

with comorbid psychiatric disorders such as depression 
[83]. Antidepressants prescribed for treatment of depres-
sion decrease seizure threshold in epileptic patients [84, 
85]. Thus, there is an unmet need to discover novel and safe 
therapies having antidepressant action with no effect on sei-
zure threshold. Ferulic acid (40, 80 mg/kg. p.o.) as an adju-
vant therapy ameliorated depression-like phenotypes in PTZ 
kindling induced chronic epileptic animals without affecting 
anti-epileptic potential of the levetiracetam (an AED). The 
study showed that ferulic acid decreased the levels of pro-
inflammatory cytokines (IL-1β, TNF-α), restored monoam-
ine levels, and HPA axis dysregulation (marked by normal 
serum corticosterone levels) [86]. In another study, ferulic 
acid (75 and 100 mg/kg, i.p.) showed potent antiepilepto-
genic effects and improved cognitive impairment possibly 
due to its potent anti-inflammatory effects [70]. Various 
studies implicated neuroinflammation observed in epilepsy 
as one of the major causes of epilepsy associated comorbid 
conditions such as depression and cognitive impairment 
[87–89]. Thus, due to its anti-inflammatory actvity and 
potential to modulate various neuro-signaling pathways, 
ferulic acid could serve as a safe adjuvant therapy with avail-
able AEDs for treatment of comorbid depression. However, 
streamlined pharmacokinetic and pharmacodynamic stud-
ies are necessary in a battery of acute or chronic epilepsy 
models to develop this molecule as a next generation AED 
or safer alternative to antidepressants in epileptic patients. 
The ameliorative effect of ferulic acid on major pathways 
involved in progression of epilepsy have been shown in 
Table 1; Fig. 2.

Ferulic Acid and Depression

Depression is characterized by persistent sadness and a lack 
of interest or pleasure in previously rewarding or enjoyable 
activities. It is a common neurological disorder affecting 
more than 264 million people worldwide [90, 91]. Recent 
findings in animal studies suggested decreased monoamine 
and BDNF levels, with elevated neuroinflammation as major 
determinants of behavioral depression [92]. Elevated corti-
costerone levels due to HPA axis dysregulation is another 
important circulating peripheral biomarker of depression 
[93]. Anti-depressants (ADs) primarily increase the synap-
tic levels of monoamines and increase BDNF levels, which 
ameliorated depression-like symptoms [94, 95]. However, 
they are associated with serious side-effects such as tachy-
cardia, blurred vision, weight gain, hemorrhage, periop-
erative headache, and seizures [96, 97]. Furthermore, 50 % 
patients with depression show resistant towards available 
ADs [98, 99]. Thus, there is unmet need to develop ADs 
with novel mechanisms, which could be useful for safe 

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Neurochemical Research

1 3

management of depression as well as effective in treatment 
resistant depression.

Phytoconstituents such as ferulic acid have been explored 
and reported for their AD like effects [100, 101]. A diverse 
range of mechanisms contribute to the AD like effects of 
this molecule [102, 103]. In animal studies, chronic treat-
ment restored monoamine and BDNF levels in the brain, 
which improved depression like phenotypes manifested as 
decreased immobility time in tail suspension test [104, 105]. 
Ferulic acid was also reported to upregulate intracellular 
adenosine triphosphate (ATP) levels suggesting a novel 
pathway for its antidepressant effects [106–108]. In addi-
tion, ferulic acid treatment also decreased oxidative stress 
as observed with decreased thiobarbituric acid reactive sub-
stances (TBARS) as well as increased catalase (CAT) and 
superoxide dismutase (SOD) levels [109].

Various studies have also demonstrated that ferulic 
acid showed AD like effects pertaining to its anti-inflam-
matory effects [110–112]. Chronic ferulic acid treatment 
reduced the expression of pro-inflammatory cytokines 
(NF- κB, IL-6, IL-1β, and TNF-α) and nitric oxide syn-
thase (NOS) enzyme in the hippocampus of prenatally 

stressed offspring rats indicating its AD like effects [111, 
112]. Ferulic acid also decreased glucocorticoid recep-
tor protein expression, restored HPA axis reactivity, and 
circulating corticosterone levels. The hippocampus is par-
ticularly vulnerable to elevated glucocorticoids because it 
expresses the highest density of glucocorticoid receptors 
in the brain. Elevated corticosterone levels over-activate 
glucocorticoid receptors, impairs hippocampal plastic-
ity by suppressing BDNF expression and neurogenesis, 
intrinsically linked to both behavior as well as learning 
and memory [111, 112]. Ferulic acid (40, 80) mg/kg; p.o. 
treatment also inhibited the MAO-A activity in the hip-
pocampus, enhanced monoamine levels and showed AD 
like effects [113, 114]. Thus, these findings suggest the 
potential of ferulic acid as an AD. Nonetheless, further 
studies are necessary to report its safety and efficacy to 
translate this molecule into clinical settings. Ferulic acid 
should also be screened as an adjuvant therapy with avail-
able ADs in animal models of treatment resistant depres-
sion as elevated neuroinflammation has been reported to 
be one of the major reasons in developing resistance to 
available ADs [115]. Pathological pathways responsible 

Table 1  Effect of ferulic acid on various mediators altered during neurological disorders

SOD, Superoxide dismutase; MDA, Malondialdehyde; CAT, Catalase; TNF-α, Tumor Necrosis Factor Alpha; IL-1β, Interleukin-1β; COX-2, 
Cyclooxygenase-2; iNOS, inducible Nitric oxide synthase; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated B cells; TLR-4, Toll-
like receptors-4; MyD88, Myeloid differentiation primary response 88; BAX, Bcl2-Associated X Protein; Bcl-2, B-cell lymphoma 2; MAO, 
Monoamine oxidase; PI3K, Phosphatidylinositol 3-kinase; Akt, Protein Kinase B; mTOR, Mammalian target of rapamycin; Aβ, Amyloid β pep-
tide; BACE1, β-site amyloid precursor protein (APP) cleaving enzyme 1; AChE, Acetylcholinesterase; TH, Tyrosine hydroxylase
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for depression and ameliorative effect of ferulic acid on 
these pathways are shown in Table 1; Fig. 2.

Ferulic Acid and Cerebral Ischemia

Ischemia-reperfusion injury (IRI) is defined as the paradoxi-
cal exacerbation of cellular dysfunction and death, follow-
ing restoration of blood flow to previously ischemic tissues 
[116]. Numerous studies have demonstrated the neuropro-
tective effect of ferulic acid following IRI primarily due to 
its neuro-signaling modulatory and anti-apoptotic effects.

Ferulic acid (100 mg/kg) treatment 30 min before middle 
cerebral artery occlusion (MCAO) significantly reduced cer-
ebral infarct and neurological deficit-score in rats. The neu-
roprotective effect of ferulic acid was mainly attributed to the 
inhibition of superoxide radicals, intercellular adhesion mol-
ecule 1 (ICAM-1) and NF-κB expression [117–119]. During 
neuronal stress such as ischemia, NF-κB translocate into the 
nucleus through nuclear pore complexes, regulates synthe-
sis of proinflammatory cytokines and adhesion factors such 
as ICAM-1 and endothelial-leukocyte adhesion molecule 1 
(ELAM-1), which further promotes leukocytes infiltration 

through the endothelium layer [120, 121]. Pharmacological 
blockade of leukocytes infiltration and migration with anti-
ICAM-1 antibody or activated leukocyte inhibitors reduced 
infarct volume following MCAO [122–126]. Ferulic acid 
also enhanced GABA-B1 receptor expression and reduced 
IRI derived nitric oxide-induced apoptosis following MCAO 
in rats [43].

Another study investigated the neuroprotective effect of 
ferulic acid in cerebral ischemia induced nerve injury. In 
this study, focal cerebral ischemia was induced by MCAO 
for 90 min followed by reperfusion for 24 h in rats. Feru-
lic acid (100 mg/kg) treatment for 7 days following MCAO 
attenuated nerve injury, neurological deficits, and secured 
normal brain histology, assessed using hematoxylin and 
eosin staining [127]. Ferulic acid has also been reported to 
increase erythropoietin levels in brain and blood following 
MCAO. Elevated erythropoietin levels increased red blood 
cell production, which increased the oxygen carrying capac-
ity of blood. It also stimulated production of nitric oxide, 
modulated blood flow, and provided neuroprotection against 
IRI [128, 129].

Ferulic acid administration has also been reported to 
restore peroxiredoxin-2 and thioredoxin levels following 

Fig. 2  Insights into the multi-target action of ferulic acid in epilepsy 
and depression. Abbreviations: BDNF, Brain-derived neurotrophic 
factor; FA, Ferulic acid; NMDAR, N-methyl-D-aspartate recep-
tor; CaM, calmodulin; CaMK, Ca2+/calmodulin-dependent pro-
tein kinase; CREB, cAMP response element-binding protein; CRE, 
cAMP response elements; PI3K, Phosphoinositide 3-kinases; AC, 
Adenylate cyclase; cAMP, cyclic adenosine monophosphate; PKA, 
Protein kinase cAMP-dependent; TrKB, tyrosine kinase receptor type 

2; AKT, Protein kinase B; IKK, IκB kinase; TNF-α, Tumor Necrosis 
Factor Alpha; ATP, Adenosine triphosphate; IL-1β, Interleukin-1β; 
COX-2, Cyclooxygenase-2; NOS, Nitric oxide synthase; NF-κB, 
Nuclear factor kappa-light-chain-enhancer of activated B cells; Glu, 
Glutamate; NLRP3, NLR family pyrin domain containing 3; ATP, 
Adenosine triphosphate; IL-1β, Interleukin-1β; IL-18, Interleukin-18. 
Green arrow indicates stimulate/increase, red arrow indicates inhibi-
tion/decrease
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MCAO in rats [130]. Peroxiredoxin-2 and thioredoxin are 
endogenous antioxidant enzymes abundantly expressed in 
the brain, which exhibit neuroprotective effects against ROS 
and prevent neuronal insult during brain ischemia by reduc-
ing infarct size and neuronal cell death. Following MCAO, 
peroxiredoxin-2 and thioredoxin levels decreased, which 
predisposed neurons to neuronal cell injury. Peroxiredoxin-2 
reduced neuronal injury by modulating thioredoxin levels, 
thereby preventing activation of apoptosis signal-regulating 
kinase 1 (ASK1), which decreased apoptotic cell death fol-
lowing transient brain ischemia [131].

In another study it is reported that ferulic acid inhibits 
nerve damage following IRI by attenuating reactive astro-
cytosis and by activating p38 Mitogen-activated protein 
(MAP) kinase signaling. Activation of p38 MAP kinase 
signaling activates BAX-induced apoptotic pathways and 
contributes to inhibition of the cytochrome c-mediated cas-
pase-3-dependent apoptotic pathways in cortex and provides 
neuroprotection [132]. Ferulic acid as an adjuvant therapy 
with puerarin and astragaloside provided synergistic neuro-
therapeutic effects and decreased the infarct volume follow-
ing MCAO. The neuroprotective effects were observed by 
markedly decreased pro-inflammatory cytokines (IL-1β) and 
neuropeptide Y (NPY) levels in the brain [133].

It has also been reported that ferulic acid treatment 
(100 mg/kg), 24 h after the onset of MCAO protected against 
neuronal damage and decreased terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) positive cells. 
Treatment attenuated the downregulation of MEK/ERK/
p90RSK signaling pathway [134]. MAP kinase belongs 
to family of serine/threonine protein kinases reported to 
modulate cell proliferation, differentiation, and death [135]. 
The p44/42 MAP kinase, also known as ERK1/2 signal-
ing pathway, interacts with extracellular stimuli such as 
mitogens and growth factors [136–138]. Raf, an important 
upstream activator of MAP kinase, phosphorylate MEK1/2 
under stress conditions, which activates ERK1/2. Follow-
ing activation, ERK1/2 further regulates the down-stream 
targets of MAP kinase such as 90 kDa ribosomalS6 kinase 
(p90RSK) [139–142]. Activated p90RSK further phospho-
rylates pro-apoptotic protein BCL2 associated agonist of 
cell death (Bad), which results in the inhibition of the apop-
tosis [143–145]. Multiple studies reported neuroprotective 
effects of ferulic acid by modulating ERK kinase signaling 
[146–149]. These studies suggested the potential of kinase 
inhibitors such as MAP kinase inhibitors or ERK inhibitors 
in serving neuroprotection following MCAO.

It has also been reported that treatment with ferulic acid 
protected against MCAO induced cell death by regulating 
expression levels of γ-enolase [150, 151], a neuron-specific 
enolase, which increases neuron survival and enhances neu-
rotrophic activity [152]. It also activates phosphatidylinosi-
tol 3-kinase (PI3K) and MAP kinase signaling pathways and 

promotes cell survival and neurite outgrowth and protects 
against IRI [153].

Ferulic acid treatment following MCAO has also been 
reported to restore protein phosphatase 2A (PP2A) levels. 
PP2A is an essential serine and threonine phosphatase pro-
tein involved in the regulation of several cellular functions 
such as cell differentiation, apoptosis, and signal trans-
duction [154]. Additionally, ferulic acid regulates PI3K/
AKT/GSK-3β/CRMP-2 signaling pathway in focal cer-
ebral ischemic injury, thereby protecting against cerebral 
injury [155]. PI3K/AKT activation suppresses neuronal 
death following cerebral ischemia and enhances cell sur-
vival [156–158]. Stress-induced AKT phosphorylation 
results in activation of several pro-apoptotic proteins, such 
as Bad and glycogen synthase kinase-3β (GSK-3β) [159]. 
Although GSK-3β has been reported to elevate caspase-3 
activity and induce apoptotic cell death following transient 
global ischemia, its pro-apoptotic potential is inhibited by 
activation of AKT phosphorylation [159, 160]. GSK-3β 
has also been reported to phosphorylate collapsin response 
mediator protein 2 (CRMP-2), and inhibit the polymeriza-
tion and stabilization of microtubules, which in turn inhibits 
axonal elongation [161, 162]. CRMP-2 abundantly exists 
in the growing axons of hippocampal neurons and medi-
ates neuronal differentiation and growth [163–165]. In 
silico studies also demonstrated that ferulic acid can attenu-
ate stress induced CRMP-2 increase during IRI [166, 167]. 
Thus, based on all these studies, ferulic acid can be seen 
as a potential candidate for novel and safe management of 
IRI pertaining to its modulatory effects on multiple neuro-
signaling pathways (Table 1) (Fig. 3).

Ferulic Acid and Alzheimer’s Disease

Alzheimer’s disease (AD) is a progressive brain disorder 
which causes dementia and slowly deteriorates cognitive 
skills primarily in the older population [168]. The abnor-
mal accumulation of extracellular amyloid-beta (Aβ) and 
intracellular neurofibrillary tangles (NFTs) impairs neu-
ral transmission [169]. There are reports showing positive 
correlation between reactive oxygen species (ROS) and 
reactive nitrogen species (RNS) levels and Aβ-deposition 
in transgenic APP mice [170–172]. These studies pro-
vided the first quantitative analysis of oxidative stress 
and lipid peroxidation (LPO) in a transgenic model of 
AD amyloidosis (Tg2576). Isoprostanes (iPs) formed by 
a free radical peroxidation of polyunsaturated fatty acids 
was used as specific markers of LPO. Urine, plasma, and 
brain tissues were collected at different ages, starting at 
4-months, and continuing until 18 months. Elevated lev-
els of 8,12-iso-iPF2a-VI in urine, plasma, cerebral cortex, 
and hippocampus were observed at the age of 8 months. 
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However, Aβ 1−40 and Aβ1−42 surge as well as Aβ deposits 
in Tg2576 mouse brains started at 12 months. Thus, these 
studies provided the direct evidence that oxidative stress 
precedes Aβ deposits and development of AD like symp-
toms [170–172].

In-silico studies have shown interaction of ferulic acid 
with Aβ deposits through hydrogen bonding, which causes 
hindrance in amyloid aggregation via interfering with the β 
sheets formation [173]. The structure-activity relationship 
studies demonstrated that ligands with particular orientation 
of the phenolic group towards aromatic residues of the Aβ 
peptide sequence would halt Aβ aggregation, which ferulic 
acid possesses [174]. These in-silico studies were further 
corroborated by in vitro studies where ferulic acid showed 
potent anti-amyloidogenic and fibril-destabilizing properties 
when exposed to Aβ1−40 and Aβ1−42 in neuronal cell culture 
[175]. Ferulic acid interacts with Aβ1−40 in the initial phase 
of aggregation and intervenes with an Aβ assembly which 
results in the production of non-fibril amorphous deposits 
[176]. Another in vitro study also confirms the neuropro-
tective effect of ferulic acid on the neurons damaged due 
to oxidative stress and neurotoxicity triggered by abnormal 
accumulation of Aβ plaques [177].

Animal studies have also showed that ferulic acid treat-
ment following Aβ1−42 i.c.v injection significantly decreased 
oxidative stress, neuroinflammation and improved cognitive 
impairment [178, 179]. In another study, cognitive improve-
ment with sodium ferulate (100, 200 mg/kg/daily) treat-
ment was correlated with its antiapoptotic effects following 
Aβ1−42 i.c.v injection. Aβ1−42 increased pro-inflammatory 
cytokine (IL-1β) receptor protein levels and its mRNA 
expression in hippocampal tissue. The elevation of IL-1β 
in combination with enhanced activation of p38 MAP 
kinase and reduced activation of ERK1/2 and AKT/PKB, 
activates caspase-3 which executes apoptosis and cell death 
[180]. Sodium ferulate has also been reported to prevent 
Aβ-induced activation of apoptotic pathways by activating 
caspase-3 and inhibiting MKK3/MKK6-p38/MAPK-Hsp27 
signal pathways [147]. Ferulic acid as an adjuvant therapy 
with epigallocatechin-3-gallate (EGCG) has also been found 
to ameliorate AD like symptoms [181].

The neurotherapeutic potential of ferulic acid to combat 
neurological disorders also captured considerable interest 
of pharmaceutical technologists and to further improve its 
cerebral delivery, scientists developed novel drug delivery 
systems such as nanoparticles. These novel drug delivery 

Fig. 3  Insights into the multi-target action of ferulic acid in cerebral 
ischemia. Abbreviations: FA, ferulic acid; PrX2, Peroxiredoxin 2; 
ROS, Reactive oxygen species; JNK, c-Jun N-terminal kinase; TLR-
4, Toll-like receptor-4; MAPK, mitogen-activated protein kinase; 
ERK1, Extracellular signal-regulated kinase 1 ; BAX, bcl-2-like 
protein 4; Cyt c, cytochrome c; c-JUN, c-Jun N-terminal kinases 
; AP1, Activator protein 1; MyD88, Myeloid differentiation pri-
mary response gene 88; IRAK, IL-1 Receptor-Associated Kinases 
; TRAF6, TNF Receptor-Associated Factor 6; IKK, IκB Kinase; 

ICAM, Intercellular adhesion molecule-1; Keap1, Kelch ECH asso-
ciating protein 1; Nrf2, Nuclear factor (erythroid-derived 2)-like 2; 
ARE, antioxidant response element; HO-1, Heme oxygenase; PI3K, 
Phosphoinositide 3-kinases; AKT, Protein kinase B; GSK-3β, Glyco-
gen synthase kinase 3; CRMP2, Collapsin response mediator protein 
2; PARP, poly-ADP ribose polymerase; Cul3, Cullin 3; Maf, Muscu-
loaponeurotic fibrosarcoma. Green arrow indicates stimulate/increase, 
red arrow indicates inhibition/decrease
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formulations of ferulic acid showed enhanced efficacy 
tested in in vitro (neuronal culture) models of AD [182]. 
One such approach was to entrap ferulic acid into solid 
lipid nanoparticles (SLN) using microemulsion technique. 
The SLNs obtained employing this technique used lipid 
matrix Compritol 888 ATO which showed high loading 
capacity of ferulic acid and best characteristics in terms 
of size, polydispersity index, and drug release profile with 
no cytotoxic potential. Another study also used a simi-
lar approach and entrapped ferulic acid into SLNs. These 
studies showed that entrapped ferulic acid decreased ROS 
generation, restored mitochondrial membrane potential, 
reduced cytochrome c release and intrinsic pathway apop-
tosis activation more effectively than ferulic acid [183, 
184]. Therefore, based on in silico, in vitro, and in vivo 
studies, it is suggestive that ferulic acid may develop as a 
novel therapy for treatment of AD. Pathological pathways 
responsible for AD and ameliorative effect of ferulic acid 
on these pathways are shown in Table 1; Fig. 4.

Ferulic Acid and Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder 
that leads to shaking, stiffness, and difficulty with walking, 
balance and coordination [185]. The major pathological 
hallmarks of PD are diminution of dopaminergic neurons 
in substantia nigra accompanied by the appearance of Lewy 
body [186]. PD is a multifactorial disease that also involves 
oxidative stress, neuroinflammation, and mitochondrial 
impairment [187].

Ferulic acid (50 mg/kg, i.p) has been reported to exhibit 
neuroprotection in the rotenone induced PD model through 
its antioxidant and anti-inflammatory properties [188]. 
Another study also showed antiparkinsonian effects of feru-
lic acid whereby its administration (40 mg/kg) significantly 
inhibited the microglial cell activation, altered the bax/bcl2 
ratio (indicators of apoptosis and neuroinflammation), and 
prevented the cell death of dopaminergic neurons induced 
by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 
in C57BL/6J mice [189]. Lithospermum officinale (active 
constituent ferulic acid) (10 and 50 mg/kg) administered 

Fig. 4  Insights into the multi-target action of ferulic acid in in Alz-
heimer and Parkinson’s disease. Abbreviations: FA, ferulic acid; 
ROS, Reactive oxygen species; BAX, Bcl-2-Associated X protein ; 
Cyt c, cytochrome c; Cas3/9, Caspase 3/9; PARP, Poly (ADP-ribose) 
polymerase; RAGE, Receptor for advanced glycation end-products; 
MAPK, mitogen-activated protein kinase; ERK1, Extracellular sig-
nal-regulated kinase 1; Bad, BCL2 associated agonist of cell death; 
MEKK4, Mitogen-activated protein kinase 4; MKK3/MKK6, Mito-
gen-activated protein kinase 3/6; GADD45, Growth arrest and DNA-
damage-inducible protein; IL-1β, Interleukin-1β; COX-2, Cyclooxy-

genase-2; NOS, Nitric oxide synthase; TNF-α, Tumor Necrosis 
Factor Alpha; HMGB1, High mobility group box 1; TLR-4, Toll-like 
receptor 4; MyD88, Myeloid Differentiation Primary Response Gene 
88; NF-κB, Nuclear factor kappa-light-chain-enhancer of activated 
B cells; 6-OHDA, 6-hydroxydopamine; SOD, superoxide dismutase; 
CAT, catalase; HSF, Heat shock factors; HSE Heat Shock sequence 
Elements; MAPK, mitogen-activated protein kinase; ERK1, Extra-
cellular signal-regulated kinase. Green arrow indicates stimulate/
increase, red arrow indicates inhibition/decrease.
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for 14 days, p.o. improved behavior deficits and reduced 
neuroinflammatory responses in the MPTP induced PD in 
mice [190]. Ferulic acid has also been reported to prevent 
α-synuclein aggregation in substantia nigra which is also a 
major neuropathological hallmark in PD [191].

Ferulic acid also showed antiparkinsonian effects by 
modulating levels of heat shock proteins (HSPs) in the rote-
none induced PD rat model. It provided neuroprotection by 
significantly increasing tyrosine hydroxylase (rate limit-
ing enzyme for dopamine synthesis) levels and heat shock 
protein (HSP70) expression in corpus striatum area of the 
brain. It is postulated that HSPs have an important role as 
protein folding machinery, which work with the ubiquitin-
proteasome system (UPS) to decompose aberrant proteins. 
HSPs also possess anti-apoptotic effects and maintain the 
homeostasis of dopaminergic neurons against stress condi-
tions [192–194].

Another interesting study has also reported anti-par-
kinsonian effect of γ-oryzanol (steryl triterpenyl esters of 
ferulic acid) in rotenone induced PD model in Drosophila 
melanogaster. In this study, flies (aged 1–5 days, both gen-
ders) exposed to rotenone for 7 days showed impaired motor 
function seen as elevated geotaxic response and decreased 
crossing numbers, mitochondrial dysfunction (decreased 
MTT reduction), decreased AChE activity, dopamine, SOD, 
CAT, and glutathione-S-transferase levels. Treatment with 
γ-oryzanol improved motor function as well as restored 
AChE, dopamine and other oxidative stress parameters 
[195]. This study suggested that γ-oryzanol due to pres-
ence of antioxidant constituents such as ferulic acid, was 
effective in reducing the rotenone induced toxicity in D. 
melanogaster. Thus, these studies strongly suggest the neu-
rotherapeutic potentials of ferulic acid in management of 
PD. Nonetheless, cellular studies should be envisioned to 
unfold multiple neuroprotective mechanisms of ferulic acid 
before its development as anti-parkinsonian drug in clinics. 
The ameliorative effect of ferulic acid on major pathways 
involved in development of PD have been shown in Table 1; 
Fig. 4.

Conclusions

The present review provided evidence of neuroprotective 
effects of ferulic acid in a range of neurological disorders. 
The results cogently highlighted the pleiotropic modulatory 
effects of ferulic acid on multiple neuro-signaling pathways 
which may explain its neuroprotective actions. However, 
many questions need to be addressed before ferulic acid 
becomes a potential candidate for treatment of neurological 
disorders in clinical settings. Therefore, multiple preclinical, 
mechanism-based studies are to be conceived and performed 
to provide more detailed answers and clarify mechanisms 

through which ferulic acid would act for the management 
and treatment of various neurological disorders.
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