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Objective(s): Accumulated evidence provides a strong connection between the immune system and 
vascular inflammation. The innate immune system’s main sensors are toll-like receptors (TLRs). 
Zymosan (Zym), a fungal product, induces an inflammatory response via activating TLR2 of the immune 
system. Atorvastatin, a potent statin, possesses pleiotropic effects including immunomodulatory, 
lipid-lowering, and anti-inflammatory. Therefore, the current study aimed to evaluate the protective 
role of atorvastatin against a high-fat diet (HFD) and Zym-induced vascular inflammation in C57BL/6 
mice via modulation of TLR2/NF-ƙB signaling pathway.
Materials and Methods: In silico study was conducted to confirm the binding affinity of atorvastatin 
against TLR2. Under in vivo study, mice were divided into four groups: Normal control: normal 
standard chow-diet fed for 30 days + Zym vehicle (sterile PBS, 5 mg/ml on 8th day); HFD (30 days) + 
Zym (80 mg/kg, IP, on 8th day); HFD/Zym + atorvastatin vehicle (0.5% CMC, p.o., from 10th to 30th day); 
HFD/Zym + atorvastatin (3.6 mg/kg, p.o., from 10th to 30th day).
Results: Atorvastatin treatment along with HFD and Zym inhibited vascular inflammation by 
suppressing the levels of aortic TLR2, cardiac NF-ƙB and decrease in serum TNF-α and IL-6. Further, 
there was an increase in hepatic LDLR levels, resulting in a decrease in serum LDL-C and an increase in 
HDL-C levels. Histopathological examination of the aorta showed a reduction in plaque accumulation 
with the atorvastatin-treated group as compared with HFD and Zym-treated group.
Conclusion: Atorvastatin attenuates vascular inflammation mediated by HFD and Zym through 
suppression of TLR2, NF-ƙB, TNF-α, IL-6, and upregulation of LDLR levels.
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Introduction
Vascular inflammatory disease is derived by the 

buildup of cells from both innate and acquired immune 
systems inside the intima of the artery wall, and it occurs 
at all phases of atherosclerotic disease progression, 
from the early development of lesion to the incidence of 
clinical events (1, 2). Toll-like receptors (TLRs) are the 
crucial part of immune systems that provide a strong 
connection between vascular inflammation, infection, 
and atherosclerosis development (3). TLRs are known 
as pattern recognition receptors, and their primary 
role is to recognize pathogens and mediate infection 
prevention. Activation of TLRs triggers the inflammatory 
signaling pathway and releases a variety of cytokines 
which affects vascular functions (4).

Increased intake of a high caloric diet alters 
adipose tissue lipolysis and lipid metabolism. It 
causes the release of inflammatory mediators, which 
contributes to the development of atherosclerosis (5). 
A previous study demonstrated that consumption 
of HFD for 4 weeks (28 days) in rats caused lipid 
dysregulation as well as enhanced systemic oxidative 
and inflammatory stresses in the heart (6). Zymosan A 
(Zym) a microbial substance derived from the yeast cell 

wall of Saccharomyces cerevisiae, has been used as an 
inflammatory agent (7, 8). Collected evidence suggested 
that Zym stimulates the immune system by activation 
of TLR2, and vascular inflammation in atherosclerosis 
is associated with the activation of Zym-induced TLR2 
signaling pathways which then transfer transmembrane 
signals that activate nuclear factor-kappa B (NF-
ƙB) (2, 9-10). It is a crucial transcription factor for 
the induction of inflammatory cytokines and also 
altered lipid metabolism by disruption of low-density 
lipoprotein receptor (LDLR); this causes foam cells to 
develop and plaque to build up in the artery wall (11). 
This, in turn, disturbs the blood flow of vascular arteries 
and increases the risk of atherosclerosis. Previous 
studies have shown that C57BL/6 mice were the most 
susceptible strain to develop vascular inflammation-
associated atherosclerosis (12, 13). Therefore, HFD and 
Zym were utilized as an experimental model to produce 
vascular inflammation in C57BL/6 mice in the current 
investigation (14, 15). 

Atorvastatin is the most effective treatment for 
dyslipidemia and prevents cardiovascular disease by 
inhibiting 3-hydroxyl-3-methylglutaryl coenzyme A 
(HMG-CoA) reductase (16). In addition to the lipid-
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lowering effect, atorvastatin appears to have pleiotropic 
properties such as immunomodulatory, anti-oxidant, 
anti-proliferative, anti-platelet, and anti-inflammatory 
(17, 18). Previous research has shown that atorvastatin 
inhibits inflammatory angiogenesis through down-
regulation of the VEGF/TGF pathway in the sponge 
implant mice (19). Bruder-Nascimento and colleagues 
reported that atorvastatin prevents aldosterone-
induced vascular inflammation by reducing oxidative 
stress in rats (20). Accumulated evidence suggests that 
TLR signaling, particularly TLR2 or TLR4, appears to 
alter the risk of coronary artery disease in humans (21). 
Numerous preclinical and clinical studies have shown 
the protective effect of statin therapy against coronary 
artery disease, hyperlipidemia, chronic heart failure, 
and hypercholesterolemia via inhibiting TLRs and their 
downstream signaling pathway (21-25). A study (26) 
reported that 4-weeks administration of atorvastatin 
reduces TLR4 expression in human CD14+ monocytes 
cells in a dose-dependent manner through inhibition of 
protein prenylation, which reduces the LPS-stimulated 
inflammatory cytokine levels. However, the effect 
of atorvastatin in HFD and Zym-induced vascular 
inflammation via modulation of the TLR2/NF-ƙB 
signaling pathway has not been explored yet. Therefore, 
the current research work was designed to investigate 
the protective role of atorvastatin against HFD and Zym-
induced vascular inflammation in C57BL/6 mice via 
modulation of the TLR2/NF-ƙB signaling pathway.

Materials and Methods
Drugs and chemicals 

Pinnacle Life Sciences, Pvt. Ltd, Himachal Pradesh, 
India, provided atorvastatin as a gift sample. Ashirwad 
Industries, Punjab, India, provided a gift sample of the 
HFD. The composition of the HFD used was 45% kcal fat, 
35% kcal, and carbohydrates 20% kcal protein (27). The 
other chemicals used in the experimental study were 
purchased from Sigma Chemicals, St. Louis, Missouri, 
USA.

In silico study (molecular docking) 
We performed molecular docking of atorvastatin 

at the TLR2 protein receptor-ligand binding site to 
gain a better understanding of the binding mode of 
atorvastatin at the molecular level. The docking of 
atorvastatin was carried out with Maestro, version 
10.6 of the Schrodinger software suite. Using the 
build panel, the ligand was sketched in 3D format and 
prepared for docking using the LigPrep tool. The protein 
for the docking investigation was obtained from the 
Protein Data Bank (PDB ID: 3a7b) and prepared by 
removing the solvent, adding hydrogen, and further 
energy minimization using protein preparation 
wizard (28). The co-crystallized ligand, LTC ((2S)-1-
({3-O-[2-(acetylamino)-4-amino-2,4,6-trideoxy-beta-
D-galactopyranosyl]-alpha-D-glucopyranosyl}oxy)-
3(heptanoyloxy)propan-2-yl (7Z)-pentadec-7-enoate) 
was used to create a grid for molecular docking in the 
protein (28). The docking was validated by withdrawing 
LTC from the site and then re-docked into the active site 
of the TLR2/TLR1 heterodimer. Atorvastatin was then 
docked at a similar site after validation.

Animals
The experimental research work was approved 

by the Institutional Animal Ethics Committee (IAEC) 
Jamia Hamdard, New Delhi, India, which was carried 
out in accordance with the Committee for the Purpose 
of Control and Supervision of Experiments on Animals 
(CPCSEA) guidelines (Registration no. of JHAEC: 173/
GO/Re/S/2000/CPCSEA, Approved Protocol No. 1389, 
Approval date-18/09/2017). C57BL/6 mice were aged 
9–13 weeks, obtained from the Central Animal House 
Facility of Jamia Hamdard, New Delhi, India. The mice 
were housed in polypropylene cages with a 12-hour 
light-dark cycle, a temperature of 22±2 °C, and relative 
humidity of 55±5% with food and water ad libitum.

Induction of experimental vascular inflammation
Zym (80 mg/kg) was dissolved in sterile phosphate-

buffered saline solution (PBS) to a final concentration of 
5 mg/ml (8). In C57BL/6 mice, vascular inflammation 
was induced by feeding pellets of HFD at random for 30 
days, followed by a single intraperitoneal (IP) injection 
of Zym on the 8th day. The dose of Zym (80 mg/kg, 
single IP injection) was selected based on a previous 
study (8, 14). An earlier study demonstrated that 
intake of HFD for 4 weeks (28 days) in rats caused lipid 
dysregulation as well as enhanced systemic oxidative 
and inflammatory stresses in the heart (6). Therefore in 
the current investigation, we selected the consumption 
of HFD in mice for 30 days along with Zym to induce 
vascular inflammation. 

Experimental design
Mice were randomly divided into four groups, each 

group consisting of six mice. Group I / Normal control: 
Mice were given regular standard chow-diet for 30 
days and the sterile PBS (Zym vehicle) (80 mg/kg, IP, 
single injection) on the 8th day; Group II / HFD + Zym: 
Mice were administered HFD for 30 days and Zym 80 
mg/kg, IP, single injection on 8th day; Group III / HFD/
Zym + atorv vehicle: Mice were given HFD for 30 days 
and Zym (80 mg/kg, IP, single injection on 8th day) + 
0.5%  carboxymethylcellulose (CMC) (atorvastatin 
vehicle, p.o.) from day 10th  to 30th day; Group IV / HFD/
Zym + atorv (3.6): Mice were administered HFD for 30 
days + Zym  (80 mg/kg, IP, single injection on 8th day) 
+ atorvastatin (3.6 mg/kg/day, p.o.) from day 10t to 
30th day (total 20 days treatment of atorvastatin). The 
atorvastatin dose was determined based upon  previous 
research (19, 29). Blood was obtained from overnight 
fasting mice on the 31 st day and centrifuged to separate 
serum, which was then stored at 20 °C for different 
lipids, interleukin-6 (IL-6), and tumor necrosis factor 
(TNF-α) assessments. The animals were sacrificed, and 
the aorta, heart, and liver were isolated to determine 
the levels of aortic TLR2, cardiac NF-ƙB, and liver LDLR. 
For histopathological study, a small portion of heart and 
aorta tissue was stored in a formalin solution (10%).

Measurement of anthropometric parameters
The difference between final and beginning body 

weight was used to calculate weekly body weight 
changes. The amount of food left in the cages subtracted 
from the total amount of food delivered to each mouse 
was used to determine their food consumption. 
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The amount of water consumed was calculated by 
subtracting the amount of water left in the water bottle 
from the total amount of water given to each mouse (30).

Measurement of serum lipids profile
Total cholesterol (TC), triglycerides (TGs), and high-

density lipoprotein-cholesterol (HDL-C) were tested 
in serum using commercial kits (Span Diagnostics Ltd, 
Surat, Gujarat, India) (HDL-C; Reckon Diagnostics Pvt 
Ltd, Baroda, Gujarat, India). Friedewald’s equation was 
used to calculate the levels of low-density lipoprotein-
cholesterol (LDL-C) and very-low-density lipoprotein 
(VLDL): LDL-C =TC − HDL −VLDL; VLDL = TGs/5 (31-
33). The atherogenic index (AI) and coronary risk index 
(CRI) were derived using the formulas LDL-C/HDL-C 
and TC/HDL-C, respectively (34).

Assessment of aortic TLR2, liver LDLR, and serum 
TNF-α, IL-6 levels

TLR2 levels in aortic tissue, LDLR protein in 
hepatic tissue, and TNF- and IL-6 levels in serum were 
determined using an ELISA kit as per the instructions 
recommended by the manufacturer (Genxbio Health 
Sciences Pvt. Ltd.) (35-38).

Immunohistochemical (IHC) analysis of NF-ƙB of 
heart left ventricle (LV) tissue 

The cardiac LV tissue sections were settled with 
acetone for 20 min, taken after endogenous peroxidase 
blocking with 0.3% H2O2 solution in methanol. After that, 
the sections were incubated with NF-ƙB antibodies as 
primary antibodies [PC137, 1:100 dilution; Calbiochem 
(EMD Millipore) overnight at 4 °C. At that point, the 
immunoreactivity was identified using biotinylated 
secondary antibodies and the avidin-biotin-peroxidase 
complex was produced. The immunoreactive signal was 
produced using diaminobenzidine as a substrate for 2 
min. The images were taken with the Meiji microscope. 
The percentage area of NF-ƙB proteins was estimated 
by using the Image J software package. The percentage 
area of NF-ƙB was calculated (sum of the total damaged 
area/total slice area) x100 (39, 40).

Histopathological assessment of aorta tissue
The aorta tissues were isolated and preserved in a 10% 

formalin solution. Sections were stained with hematoxylin 

(H) and eosin (E) solutions, and observations were 
analyzed under a Meiji microscope. The Image J software 
package was used to calculate the plaque percentage area 
of atheromatous plaques. The atheromatous percentage 
plaque area was determined as (sum of total accumulated 
plaque area/total slice area) x 100 (39, 40).

Statistical analysis 
All data (n=6 per group) were represented as mean 

± standard error of the mean (SEM) GraphPad Prism 
software (version 5.00) was used to compare all of the 
results statistically. Significant differences of weekly 
body weight were examined by two-way analysis of 
variance (ANOVA) followed by Bonferroni post hoc 
tests and other parameters’ significant differences were 
examined by one-way ANOVA followed Tukey’s multiple 
comparison test. At P<0.05, differences in results were 
considered statistically significant.

Results
Molecular docking analysis

The molecular docking of atorvastatin was carried 
out with TLR2 Protein. It has been already reported 
that TLR2 possesses leucine-rich repeats sequence 
(LRRs), in its catalytic domain having residues Phe314, 
Phe312, Gln316, Gly313, Val311 of TLR1, and Leu324, 
Leu350, Phe325, Phe349, Tyr376, Tyr323 which 
primarily contributes to the active site of TLR2/TLR1 
(41, 42). Tyrosine residues in TLR2 play a crucial role 
in the interaction of staphylococcal superantigen-like 
proteins (SSL3) and TLR2. Tyr326 contributes to the 
inhibitory potency of SSL3 to inhibit TLR2 (43). In the 
present docking study, results reveal that atorvastatin 
showed interaction in the catalytic domain, i.e., Phe266 
and Tyr326 against TLR2. The atorvastatin and TLR2 
complex attained a docking score (-11.545). The 
benzene ring of atorvastatin formed a pi-pi bond with 
the phenyl ring of Phe 266, along with a hydrogen bond 
of two OH groups with Tyr 326 (Figure 1).

Atorvastatin improved the food and water intake 
daily in HFD and Zym treated mice

It was found that administration of HFD together with 
Zym, i.e., group II, produced a significant (P<0.001) fall 
in daily food and water intake in C57BL/6 mice when 
compared with the normal standard chow-diet fed mice, 
i.e.,  group I. Treatment with atorvastatin (3.6 mg/kg/
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Figure 1. The molecular docking of atorvastatin against TLR2 protein (A) The binding mode of atorvastatin (brown) is depicted, and key residues 
are marked with grey sticks. (B) A log plot of atorvastatin is displayed in the active site of the TLR2 protein receptor
TLR: Toll-like receptor
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day) along with HFD and Zym showed a significant 
(P<0.001), (P<0.01) rise in daily food intake and daily 
water intake, respectively when compared with HFD 
and Zym treated group. Administration of atorvastatin 
vehicle, i. e., group III, along with HFD and Zym resulted 
in non-significant (P>0.05) changes in daily food and 
water intake when compared with the HFD and Zym 
treated group (Figures 2A, B).

 
Effect of atorvastatin on weekly body weight in HFD 
and Zym treated mice 

In group II, when mice were fed HFD alone in the 
first week, it was observed that there was a significant 
(P<0.001) elevation in body weight in the first week 
but, after administration of Zym on the 8th day (80 mg/
kg) single IP injection and feeding HFD subsequently 
for 30 days, a significant (P<0.001) loss in body weight 
was observed when compared with the normal control 
group, i.e., group I. Administration of atorvastatin (3.6 
mg/kg/day), i.e., group IV, along with HFD and Zym 
showed a significant (P<0.001) elevation in body weight 
as compared with HFD and Zym administered group 
(Figure 2C). 

Atorvastatin treatment improved serum lipids levels 
in HFD and Zym treated mice

Mice treated with HFD along with Zym, i.e., group 
II observed a significant (P<0.001) increase in serum 
TC, LDL-C, VLDL, TG levels and a significant (P<0.001) 
decrease in serum HDL-C levels. Administration of 
atorvastatin (3.6 mg/kg/day) along with HFD and Zym 
produced a significant (P<0.001) reduction in TC, TG, 
VLDL, and LDL-C levels when compared with the HFD 
and Zym treated mice. However, administration of 
atorvastatin vehicle in group III, along with HFD and 
Zym, resulted in no significant differences (P>0.05) in 
the serum lipid levels when compared with group II 
(Table 1).

Atorvastatin reduced atherogenic index (AI) and 
coronary risk index (CRI) in HFD and Zym treated 
mice

It was observed that there was a significant (P<0.001) 
increase in AI and CRI in HFD and Zym treated mice 
when compared with the normal control group. When 
the animals were administered atorvastatin (3.6 mg/
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Figure 2. Representative figures showing the effect of atorvastatin on (A) Daily food intake, (B) Daily water intake, and (C) Weekly body weight in 
HFD and Zym-induced vascular inflammation in C57BL/6 mice.***P<0.001 versus normal control group; ### P<0.001, ## P<0.01,  and ns P>0.05 
versus HFD+Zym group. Data in the graph are provided as mean ± SEM (n =6)
HFD: High-fat diet; Zym: Zymosan A

 

Table 1. Atorvastatin effect on serum lipid levels in HFD and Zym induced vascular inflammation in C57BL/6 mice

HFD: High-fat diet; Zym: Zymosan A; Atorv: Atorvastatin; TC: Total cholesterol; TGs: Triglycerides; HDL-C: High-density lipoprotein-cholesterol; 
LDL: Low-density lipoprotein-cholesterol; VLDL: Very-low-density lipoprotein-cholesterol; AI: atherogenic index; CRI: coronary risk index. Data 
are provided as mean ± SEM (n = 6 animals per group)
aP<0.001versus normal control group; bP<0.001 and ns P>0.05 versus HFD+Zym group



1027Iran J Basic Med Sci, Vol. 24, No. 8, Aug 2021

Modulatory role of atorvastatin in C57BL/6 mice Arya and  Bhandari

kg/day) along with HFD and Zym, it was found that drug 
treatment significantly (P<0.001) reduced HFD and 
Zym-induced increase in AI and CRI when compared 
with HFD and Zym administered group (Table 1).

Atorvastatin reduced hepatic LDLR degradation in 
HFD and Zym treated mice 

In the HFD and Zym treated mice, i.e., group II, it 
was observed that there was a significant reduction 
(P<0.001) in the LDLR protein levels when compared 
with the normal control group, i.e., group I.  Treatment 
with atorvastatin (3.6 mg/kg/day), i.e.,  group IV, together 
with HFD and Zym observed a significant (P<0.01) 
increase in hepatic LDLR protein when compared with 
the group II. Administration of atorvastatin vehicle, 
i.e.,  group III, along with HFD and Zym produced no 
significant (P>0.05) changes when compared with HFD 
and Zym administered mice, i.e.,  group II (Figure 3B).

Atorvastatin inhibited HFD and Zym induced aortic 
TLR2 levels

In group II stimulation with HFD and Zym led to 
robust (P<0.001) increases in aortic TLR2 levels when 
compared with the normal control mice, that is, group I. 
When animals were treated with atorvastatin (3.6 mg/
kg/day), i.e.,  group IV, along with HFD and Zym, it was 
observed that these treatments significantly (P<0.001) 
down-regulated the aortic TLR2 levels when compared 
with the HFD and Zym administered mice, i.e.,  group II 
(Figure 3A).

Atorvastatin inhibited HFD and Zym induced NF-ƙB 
levels and percentage in the heart LV

The results demonstrated that HFD and Zym 
administered mice (group II) had significantly higher 
levels of NF-ƙB in cardiomyocytes. However, when 

atorvastatin (3.6 mg/kg/day) was given along with HFD 
and Zym, the levels and percentage area of NF-ƙB were 
reduced (Figure 4).

Atorvastatin lowered the levels of serum 
inflammatory mediators, TNF-α and IL-6, in HFD and 
Zym treated mice

    In HFD and Zym administered mice (group II), it was 
observed that there was a substantial increase (P<0.001) 
in the levels of TNF-α and IL-6 when compared with the 
normal control group. When animals were administered 
atorvastatin (group IV) along with HFD and Zym, it 
was observed that there was a significant (P<0.001) 
decreased in TNF-α and IL-6 levels, when compared 
with HFD and Zym administered mice. Atorvastatin 
vehicle administration in group III, along with HFD and 
Zym, resulted in non-significant differences (P>0.05) in 
the levels of serum TNF-α and IL-6 when compared with 
group II (Figures 3C, D).

Atorvastatin ameliorated HFD and Zym induced 
histopathological changes 

As shown in Figure 4, the aortic tissue in the normal 
control group represented normal structure without 
histopathological changes. Mice treated with HFD 
and Zym for 30 days showed a significant (P<0.001) 
increase in the plaque deposition area percentage in the 
innermost layer, i.e.,  intima layer of the aortic tissue, 
which leads to the narrowing of the aortic wall, when 
compared with the normal control group. Administration 
of atorvastatin (3.6 mg/kg/day) in group IV, along 
with HFD and Zym, resulted in a significant (P<0.001) 
decrease in atheromatous plaque area percentage when 
compared with the HFD and Zym administered group 
(Figure 5).

 

3 
 

 
 

 

 

 

 

 

Figure 3. Representative figures showing the effect of atorvastatin on (A) TLR2 levels in aorta tissue, (B) LDLR levels in hepatic tissue, (C) TNF-α 
levels in serum, and (D) IL-6 levels in serum of HFD and Zym-induced vascular inflammation in C57BL/6 mice. ***P<0.001versus normal control 
group; ### P<0.001, ## P<0.01, and ns P>0.05 vs HFD+Zym group. The graph's data are provided as mean ± SEM (n =6)
HFD: High-fat diet; Zym: Zymosan A; TLR: Toll-like receptor
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Discussion
Accumulated evidence suggests a direct link between 

inflammation and arterial disease. The inflammatory 
response in vascular walls plays a crucial role in the 
development of arterial disease until clinical signs 
including dyslipidemia, atherosclerosis, myocardial 
infarction, and stroke appear (44). Therefore, inhibiting 
the vascular inflammatory reactions is a potential 
strategy for preventing cardiovascular events and 
their associated comorbid conditions (15). The 
present investigation explored the role of atorvastatin 
in ameliorating HFD and Zym-induced vascular 
inflammation and their potential mechanism. 

In the present investigation, we observed that 
atorvastatin suppressed the vascular inflammatory 
response by modulating the TLR2/NF-ƙB signaling 
pathway, reduced release of pro-inflammatory cytokines, 
decreased plaque accumulation, and improved impaired 
lipid profile by rescuing the degradation of hepatic 
LDLR, induced by HFD and Zym administration.

 In the current study, it was observed that oral intake 
of a high caloric diet in the form of HFD alone in the first 
week, i.e.,  initial 7 days without Zym in HFD and Zym 
group mice significantly increased weekly bodyweight, 
daily food, and water intake when compared with 
normal standard chow diet-fed mice. However, 
administration of Zym (80 mg/kg, single IP injection) 
on the 8th day together with  HFD for another 23 days 
(total 30 days of HFD feeding) induced acute arterial 
inflammation in mice, resulting in a substantial decrease 
in weekly bodyweight and daily food and water intake 
when compared with the normal standard chow diet-
fed group. Our results are in line with the findings of 
Malik and coworkers (8) who found that administration 
of Zym to C57BL/6 mice caused inflammation, which 
led to a catabolic state with an 8%  decrease in food 
consumption, and a  5–7%  decrease in body weight 
in the first 24 hr.  Yuan et al. (15) also found that rats 
treated with HFD and Zym were less active and had 
lower food and water intake for two consecutive weeks.
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Figure 4. Immunohistochemical evaluation of NF-ƙB in heart LV sections is highlighted by black arrow (brown stain) in cardiomyocytes. [Scale 
bar - 100 μm]: (IHC, 40X) (n=6) (A) Normal control(sterile PBS ; Zym vehicle), (B) HFD (30 days) and Zym (80 mg/kg IP , single injection on 8th 
day), (C) HFD/Zym + atorvastatin vehicle (0.5% CMC ), (D) HFD/Zym+ atorvastatin (3.6 mg/kg/day, p.o.), and (E) percentage area of NF-kB was 
calculated (sum of the total damaged area /total slice area) x100, as assessed from the cardiac sections by Image J software. ***P<0.001 versus 
normal control group; ###P<0.001 and ns P>0.05 versus HFD+Zym group. Data in the graph are provided as mean ± SEM (n =6)
HFD: High-fat diet; Zym: Zymosan A 

5 
 

 
 

 

Figure 5. Atorvastatin effect in ameliorating HFD and Zym induced pathological changes in aorta tissue of C57BL/6 mice. Photomicrographs of 
distinct groups of aorta tissues (H and E staining, 10×) [Scale bar - 50 μm]. The black arrow showed plaque accumulation. (A) Normal control 
(sterile PBS; Zym vehicle), (B) HFD (30 days) and Zym (80 mg/kg, IP single injection on 8th day), (C) HFD/Zym + atorvastatin vehicle (0.5% CMC), 
(D) HFD/Zym+ atorvastatin (3.6 mg/kg/day, p.o.), and (E) Atheromatous plaque percentage area was determined as (sum of the total accumulated 
plaque area / total slice area) x 100, as assessed from the aorta sections by Image J software. ***P<0.001versus normal control group; ###P<0.001 
and ns P>0.05 versus HFD+Zym group. Data in the graph are provided as mean ± SEM (n =6)
HFD: High-fat diet; Zym: Zymosan A



1029Iran J Basic Med Sci, Vol. 24, No. 8, Aug 2021

Modulatory role of atorvastatin in C57BL/6 mice Arya and  Bhandari

Further, the present study found that treatment 
with atorvastatin along with HFD and Zym increased 
weekly bodyweight and daily food and water intake 
when compared with the HFD and Zym treated group 
but not the normal standard chow diet-fed group. Our 
findings support the findings of Liu et al. (7) wherein 
they reported that curcumin treatment reversed the 
decrease in body weight due to Zym administration in 
C57BL/6 mice.

We tested the predicted binding of atorvastatin with 
TLR2 receptor protein using molecular docking to 
further investigate whether atorvastatin modulates the 
TLR2 protein in the current research. The docking study 
discovered that atorvastatin interacts with TLR2 protein 
through active binding residues Phe266 and Tyr326. 
A pi-pi bond was formed between the benzene ring of 
atorvastatin and the phenyl ring of Phe 266, as well 
as a hydrogen bond between two OH groups with Tyr 
326. The atorvastatin-TLR2 complex received a docking 
score (-11.545). As a result, the current study reported 
that atorvastatin has a TLR2 binding affinity. Therefore, 
the present study confirmed that atorvastatin could 
modulate the expression of TLR2 protein. Our results 
corroborate the findings of another study (45) wherein 
they reported the binding interaction of chitin and TLR2 
through docking. Authors found that chitin binds with 
TLR2 through the active sites Val322, Phe296, Phe299, 
Ser320, Thr309, and Leu302 having two hydrogen 
bonds.

TLR2 are pattern recognition receptors of innate 
immunity that are highly expressed in endothelial cells 
placed at regions of susceptibility to atherosclerosis, 
such as the aortic arch (46). There is growing evidence 
that TLR2 is the major initiator of inflammation and 
promotes atherosclerosis (47). Engagement of TLR2 on 
immune and resident vascular cells can affect arterial 
inflammatory response that leads to inflammatory 
pathway activation, release of inflammatory mediators, 
and altered endothelial function and has been 
implicated in the development of almost all metabolic 
and atherosclerotic diseases (48). Atorvastatin’s 
mechanism against the TLR2 pathway in HFD and Zym-
induced vascular inflammation is as yet not explored. 
Therefore, to find out whether the anti-inflammatory 
activity of atorvastatin is mediated by the TLR2 signaling 
pathway, we evaluated the TLR2 expression in the 
aorta of mice. In the present investigation, it was found 
that administration of HFD along with Zym enhanced 
arterial inflammation by increasing the aortic TLR2 
levels. As a result, the area of atheromatous plaque in 
the aorta increases, as confirmed by the histological 
investigation. Treatment with atorvastatin along 
with HFD and Zym decreased TLR2 levels and plaque 
accumulation in mice aorta. Our findings are in line with 
another study (49) wherein they demonstrated that 
exogenous administration of synthetic TLR2 agonist 
activates TLR2 in the aorta and enhances atherosclerotic 
plaque accumulation and plaque media ratio in ApoE-
/- atherosclerotic mice. Furthermore, research carried 
out by other researchers (50) reported that deficiency 
of TLR2 reduces foam cell production in lesion-prone 
regions of the aorta in ApoE/ mice.

Researchers reported that TLR2 triggered the 
inflammatory response by activation of NF-ƙB (2). 

Transcription factor NF-kB is considered a major 
intracellular inflammatory pathway that mediates most 
of the vascular inflammatory response (51, 52). It is 
normally found in the cytoplasm, but when activated, 
it translocates into the nucleus. Then nucleus-located 
NF-kB will trigger and release various cytokines genes, 
such as TNF-α and IL-6 which lead to atherosclerotic 
plaque instability and rupture (15, 53). As a result, in 
the current study we evaluated the levels of cardiac NF-
ƙB in HFD and Zym induced vascular inflammation in 
C57BL/6 mice. The present research work indicates 
that treatment with HFD together with Zym increased 
the cardiac NF-kB levels. However, treatment with 
atorvastatin decreased NF-kB levels in cardiomyocytes, 
which may be mediated by down-regulation of TLR2. 
The result confirmed that atorvastatin could attenuate 
the HFD and Zym-induced vascular inflammation via 
inhibiting the NF-ƙB levels. These findings are in line 
with the findings of Yuan and colleagues (15) who found 
that administering Wistar rats HFD and Zym (20 mg/
kg, IP, single injection every 3 days for 2 weeks) for 9 
weeks resulted in elevated NF-ƙB expression, which was 
reversed by Panax notoginseng saponin treatment. Our 
results are also corroborated with the findings of another 
study (40) wherein they found that administration of 
interleukin-18 in mice induced vascular inflammatory 
response which increased the NF-ƙB expression in 
cardiomyocytes. Also, researchers (54) reported 
that suppression of TLR2 and NF-kB levels alleviates 
atherosclerotic inflammation. Thus, the findings of 
our study revealed that the anti-inflammatory role of 
atorvastatin may be attributed to modulation of the 
TLR2/NF-ƙB signaling pathway against HFD and Zym-
induced vascular inflammation in C57BL/6 mice.

According to previous research, activation of TLR2 
promotes the release of inflammatory mediators such 
as TNF-α and IL-6 via NF-kB signaling, resulting in 
vascular wall dysregulation (2). Researchers reported 
that atorvastatin inhibits secretion of IL-1β and TNF-α 
induced by lipopolysaccharide (55, 56). Consistent with 
these previous studies, the results of the current study, 
showed that the HFD and Zym administered group 
showed an increase in the levels of TNF-α and IL-6 which 
was significantly reduced by atorvastatin treatment.

Vascular inflammation mediates distinct changes in 
lipid and lipoprotein metabolism (14). Inflammation 
and hypercholesterolemia are related to a critical 
condition in which an accumulation of cholesterol in 
the artery wall triggers an inflammatory response, 
which increases cholesterol deposition and exacerbates 
vascular inflammation (57). Collected evidence suggests 
that inflammation affects cholesterol homeostasis 
by causing hepatic LDLR degradation intracellularly. 
Degradation of the LDLR is closely related to cholesterol 
aggregation and foam cell development (58, 59). A study 
(14) reported that administration of HFD for 7 days and 
Zym (80 mg/kg, IP, single injection) in C57BL/6 mice 
promotes inflammation, which results in a decrease 
in LDLR and increases LDL-C levels.  Interestingly, our 
results showed that treatment of HFD and Zym reduced 
hepatic LDL receptor levels, resulting in a decrease 
in circulating LDL-C clearance and accounting for 
the increase in serum LDL-C levels. Besides this, we 
also found an alteration in the lipid metabolic profile 
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(significant increase in serum TC, LDL-C, VLDL, and TG 
levels and decrease in serum HDL-C levels) in C57BL/6 
mice. Further, treatment with atorvastatin along with 
HFD and Zym significantly increased the hepatic LDLR 
levels which resulted in decreased LDL-C levels. In 
addition, atorvastatin treatment decreased TC, VLDL, 
and TG levels and also decreased AI and CRI, and 
significantly increased HDL-C levels as compared with 
HFD and Zym only administered mice.

The above findings were confirmed by the results 
of the histological analysis showing that the HFD and 
Zym administered group had increased atheromatous 
plaque area in aorta tissue. Atorvastatin treatment 
showed a decrease in the atheromatous plaque area in 
aorta tissue.

Conclusion
Our study provides evidence that HFD together with 

Zym induces vascular inflammation in C57BL/6 mice. 
Atorvastatin (3.6 mg/kg/d) treatment can effectively 
attenuate the vascular inflammation induced by HFD 
and Zym in C57BL/6 mice by significantly reducing 
the lipid levels including TC, LDL, VLDL, and TG levels 
and also decreased AI and CRI and increased HDL-C 
levels. Furthermore, atorvastatin treatment suppresses 
the vascular inflammatory response via inhibiting 
the expression of TLR2, NF-ƙB, LDLR, TNF-α, and IL-6 
and reduces plaque accumulation in the aorta. The 
investigation thus clearly exhibits anti-inflammatory 
and anti-atherosclerotic effects of atorvastatin against 
HFD and Zym induced vascular inflammation.
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