
RECENT PRIORITY ALGORITHM IN REGRESSION TESTING

Amrita Jyoti, Yogesh Kumar Sharma, Ashish Bagla, D. Pandey

Regression testing is an expensive but necessary maintenance activity, performed on a modified program to instil confidence
that changes are correct and have not adversely affected unchanged portions of the program. An important difference between
regression testing and development testing is that during regression testing an established suite of tests may be available for
reuse. One regression testing strategy, the retest-all approach, reruns all such tests, but this strategy may consume excessive
time and resources. Regression test selection techniques, in contrast, attempt to reduce the time required to retest a modified
program by selecting some subset of the existing test suite. To reduce the cost of regression testing, software testers may
prioritize their test cases so that those which are more important, by some measure, are run earlier in the regression testing
process. We propose an algorithm for prioritizing test cases. In this work, we propose a model that achieves 100% code
coverage optimally during version specific regression testing. Here prioritization of test cases is done on the basis of priority
value of the modified lines covered by the test case.

1. INTRODUCTION

Software products continually change and evolve. As the
software is modified, renewed testing must ensure both that
the new product features work properly and that the changes
have not introduced new defects into the product. This
process is regression testing and it requires the following
steps:

1. Determine the current operational profile.

2. Retain the currently existing test cases that remain
valid in the new context.

3. Delete test cases that are no longer valid.

4. Create new test cases for new, enhanced or
modified software capabilities.

Regression test selection techniques reduce the cost of
regression testing by selecting an appropriate subset of the
existing test suite based on information about the program,
modified version and test suite.

2. TEST CASE PRIORITIZATION

Test case prioritization techniques let testers order their test
cases so that those test cases with the highest priority,
according to some criterion, are executed earlier in the
regression testing process that lower priority test cases.

There are two varieties of test case prioritization viz.
general test case prioritization and version specific test case
1ABES Engg. College, Ghaziabad (U.P.)
2,3SDCET Muzaffarnagar (U.P.)
4ABES Engg. College, Ghaziabad (U.P.)

E-mail: 1amrita_p2@rediffmail.com, 2yks_mzn@rediffmail.com,
3baglaashish@rediffmail.com

prioritization. In general test case prioritization, for a given
program P and test suite T, we prioritize the test cases in T
that will be useful over a succession of subsequent modified
version of P without any knowledge of modified version. In
version specific test case prioritization, we prioritize the test
cases in T, when P is modified to P', with the knowledge of
the changes that have been made in P.

In this work, we concentrate on version specific test case
prioritization. We propose a prioritization technique that
achieves modified code coverage at the fastest rate possible.

3. PROBLEM STATEMENT

Let P be a procedure or program.

P' be a modified version of P

T is a test suite created to test P.

When P is modified to P', we have to find T ' which is a
subset of T that achieves maximum code coverage at the
earliest and should be given highest priority during regression
testing, For this purpose, we want to identify tests that

• Execute modified code at least once at the earliest;

• Execute code that has been inserted or deleted so
that the changes in the program due to insertion or
deletion of statements can be taken care of.

4. ALGORITHM FOR REGRESSION TESTING

A. Inputs to the Algorithm

1. Old source code;

2. New source code;

International Journal of Information Technology and Knowledge Management
July-December 2010, Volume 2, No. 2, pp. 391-394

mailto:1amrita_p2@rediffmail.com
mailto:2yks_mzn@rediffmail.com
mailto:3baglaashish@rediffmail.comprioritization

392 AMRITA JYOTI, YOGESH KUMAR SHARMA, ASHISH BAGLA, D. PANDEY

3. Test case history showing the list of test cases;

4. Changes in the old source code. It indicates the
line nos. that is affected by the changes.

5. Priority associated with the modified lines. It
indicates the priority value of the modified lines
given by the tester according to some rules*. These
rules can be change according to tester and as well
as requirement of the program which is to be under
regression testing.

6. Execution history of each test case that tells the
code lines that have been covered by each test case
*in our algorithm priority value given to the
modified lines 1(lowest priority value) to 7 (highest
priority value) by the following rules (we are taking
some examples for C++ language)

 Rules Priority Value

• modification in o/p function 1

example1

original- printf(“The output is”);

modified- printf(“Now the result is”);

• modification in constant value 2

example2

original- cost=num*2;

modified- cost=num*3;

example3

original – salary=salary(salary*0.4);

modified – salary=salary(salary*0.2);

• modification in variables Value 3

example4

original – rate=50;

modified – rate=100;

• modification in i/p function 4

example5

original – scanf(“%f”, &hour);

modified – scanf(“%2f”, &hour);

• modification in constant value

in branch (if, while etc) 5

example6

original- elseif (validinput= =–2);

modified- elseif (validinput= =–1);

• modification in variable value in branch (if,
while etc) 6

example7

original – else rate=50;

modified – else rate=100;

• modification in range in branch (if, while etc) 7

example8

original- if(hours<0&& minute>200);

modified- if(hour<0&& minute>150);

B. Output of Algorithm

The output is a set of test cases to be run on new program
with the priorities associated with them. The algorithm saves
the cost and effort of running extra test cases.

C. Algorithm

Let T be the set of test cases for the program.

M be the set of modified lines in the program.

T’ be the set of test cases selected for execution.

Regression_test function:

1. T' = ∅

2. While (no. of modified lines not equal to 0)

3. For each test case t

Count the number of modified lines covered by test
case t End for.

4. For each test case t

Count the sum of the priority value of the
modified lines covered by the test case t.

End for.

5. For each test case t

Choose the test case with maximum number of
modified lines If two or more test cases cover same
number of modified lines then choose the test case
which covers maximum priority value.

End if.

End for.

6. Now remove the modified lines covered by the

selected test case t from modified lines set M.

M=M-(No. of lines covered by the test case t)

7. Insert the particular test case t into set T’.

End While.

RECENT PRIORITY ALGORITHM IN REGRESSION TESTING 393

8. Goto step 2.

9. Exit

5. DESCRIPTION OF THE ALGORITHM

Our aim is to execute the modified lines of code with
minimum number of test cases. Let us take that for a program
of 40 lines of code, there are 7 code coverage based test
cases. The execution history of each test case is shown in
Table 1. It indicates the line numbers that are traversed by
the test case during its execution.

Table 1
Execution History

Test case Id LOC covered

T1 1-8,13,36,37-40

T2 1-5,13-16,19-22,25-31, 35-40

T3 1-9,13-16,19-22,25-32,35-40

T4 1-9,13-16,19-22,25-32,35-40

T5 1-13,36-40

T6 1-9,13-21,27-30,35-40

T7 1-4,13-16,19-32,35-40

 Suppose that the lines of code 5,7,10,17,21,23 and 26
are modified and priority value of the modified lines
according to given rules are shown in table 2.

Table 2
Given Rules

Modified line Priority value

Line no.5 1

Line no. 7 5

Line no. 10 4

Line no. 17 6

Line no. 21 3

Line no. 23 2

Line no. 26 5

Table 3 shows the no. of modified lines of code and the
sum of the priority value of the modified lines. We can find
out that test case T1 covers 2 modified lines of code.
Similarly T2 covers 3 modified lines of code. This is
computed for all test cases.

Table 3
No. of Modified Lines

Test case Id No.of modified Lines Sum of the priority
covered by test case value of the modified
(line nos.) lines= total sum

T1 2 (5,7) 1+5 = 6

T2 3 (5,21,26) 1+3+5 = 9

T3 4 (5,7,21,26) 1+5+3+5 = 14

T4 4(5,7,21,26) 1+5+3+5 = 14

T5 3(5,7,10) 1+5+4 = 10

T6 4(5,7,17,21) 1+5+6+3 =15

T7 3(21,23,26) 3+2+5 =10

Test cases T3, T4 and T6 cover maximum number of
modified lines of code. But T6 is executed first since it has
maximum priority value.

Modified lines of code still to be executed= {10, 23,
26}

Again we check for the no. of modified lines of code
that are not yet executed but covered by the test case. By
doing this, we see that now T1 covers none of the modified
lines of code that are not yet executed, T2 covers one of the
modified lines of code and so on. This is represented in Table
4.

Table 4
Lines Covered by Code

Test case Id No. of modified lines Sum of the priority
covered by test case value of the modified
(line nos.) lines= total sum

T1 0 0

T2 1(26) 5

T3 1(26) 5

T4 1(26) 5

T5 1(10) 4

T7 2(23,26) 5+2 =7

First T7 is executed since it covers maximum modified
lines of code of all the test cases listed in Table 4.

 Modified lines of code still to be executed= {10}

The same prioritization process is repeated till all the
modified lines of code are covered. This is represented in
Table 5.

Table 5
Prioritization Process

Test case Id No. of modified lines Sum of the priority
covered by test case value of the modified
(line no.) lines= total sum

T1 0 0

T2 0 0

T3 0 0

T4 0 0

T5 1(10) 4

Now T5 is executed.

The test cases in order of priority are:

Test case no.: 6

394 AMRITA JYOTI, YOGESH KUMAR SHARMA, ASHISH BAGLA, D. PANDEY

Test case no.: 7

Test case no.: 5

Hence 3 out of 7 test cases is executed. We need to run
only 43% of test cases to achieve 100% code coverage of
modified lines of code. Hence 57% saving in test cases is
achieved using this method of prioritization.

In case of any deletion of statements in the original
program, we remove the lines of code that have been deleted
from the execution history of the test cases. Then we check
whether there are any redundant test cases and if any such
test case is found, it is removed from the test suite.

The algorithm has been implemented in C++ language.
The cost of implementing the algorithm is almost negligible
but it saves the cost and effort of running extra test cases.

REFERENCES

[1] Aggarwal K.K., Yogesh Singh and Arvinder Kaur(2004)
“Code Coverage Based Technique for prioritizing Test
Cases for Regression Testing”, ACM SIGSOFT, 29, Issue
3, September.

[2] Anneliese von Mayrhauser and Kurt Olender(1993)
“Efficient Testing of Software Modifications”, IEEE
International Test Conference.

[3] Elbaum S., A.Malishevsky and G.Rothermel(2002) “Test
Case Prioritization: A Family of Empirical Studies”, IEEE
Transactions on Software Emgineering,28, No. 2, February.

[4] Gregg Rothermel and Mary Jean Harrold(1996) “Analyzing
Regression Test Selection Techniques”, IEEE Transactions
on Software Engineering, 22, No.8, August.

[5] Gregg Rothermel, Roland H.Untch and Mary Jean
Harrold(2001) “Prioritizing Test Cases for Regression
Testing”, IEEE Transactions on Software Engineering,
27, No. 10, October.

[6] Todd L.Graves, Mary Jean Harrold,Jung Min Kim, Adam
Porter and Gregg Rothermel(1998) “An Empirical Study
of Regression Test Selection Techniques”, IEEE
Transactions on Software Engineering.

[7] Yogesh Singh. Arvinder Kaur and Bharti Suri(2005) “A
New Technique for Test Case Prioritization for Regression
Testing”, BIMC, April.

[8] Yuejian Li and Nancy J.Wahl(1999) “An Overview of
Regression Testing”, ACM SIGSOFT, 24, No.1, Janua.

