ORIGINAL PAPER

Performance improvement of grid-integrated PV system using novel robust least mean logarithmic square control algorithm

Avdhesh Kumar¹ · Rachana Garg¹ · Priya Mahajan¹

Received: 7 April 2021 / Accepted: 16 March 2022 © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The growing integration of distribution grid with solar energy (PV) has resulted in severe power quality (PQ) concerns, particularly in the case of a weak distribution grid. In order to improve the PQ, the effective development of a control algorithm for the solar energy (PV) conversion system, interfaced to the grid, is very vital. In this article, an adaptive robust least mean logarithmic square (RLMLS) filter-based control has been proposed to provide grid integration capabilities of a PV system, for optimal operation. Moreover, it supplies active power to the linear/nonlinear load and grid, along with power factor correction, load balancing, and harmonics mitigation. MATLAB/Simulink (2018a) is used for modelling and evaluation of the proposed system, under various loading scenarios, including nonlinear, unbalance, and load increment. It is also tested under severe grid voltage conditions, such as unbalanced and distorted grid voltage. The system's performance has been verified as per IEEE-519 standard, showing that it is capable of grid integration and efficient in maintaining the PQ under 10 non-ideal grid conditions characterized by a wide variety of load fluctuations, distortion, and unbalance with added benefits 11 of faster convergence speed, reduced complexity, less sampling time, better accuracy, low dynamic oscillations/ripples in the 12 estimation of active component, ease of implementation, and adaptability. Furthermore, a hardware prototype is developed for 13 validation, and test results show that the system can operate efficiently under a wide variety of load fluctuations, distortion, 14 and unbalance conditions. 115

Keywords Robust least mean logarithmic square (RLMLS) · Power quality (PQ) · Total harmonic distortion (THD) · Least
 mean square (LMS)

 $\mathcal{U}_{pa}, \mathcal{U}_{pb}, \mathcal{U}_{pc}$

In-phase unit templates of voltages

List of Symbols

University, Delhi, India

			$\mathcal{U}_{qa}, \mathcal{U}_{qb}, \mathcal{U}_{qc}$	Quadrature unit templates of voltages	28
19	RLMLS	Robust least mean logarithmic square	e_{pa}, e_{pb}, e_{pc}	Estimation error of a, b, c phases	29
20	PQ	Power quality	w_{pa}, w_{pb}, w_{pc}	Fundamental active weights' component	30
21	THD	Total harmonic distortion		of load of a, b, c phases	31
22	LMS	Least mean square	w_{lp}	Averaging of the fundamental active com-	32
23	PV	Solar energy		ponent of load of a, b, c phases	33
24	RES	Renewable energy resources	w_{qa}, w_{qb}, w_{qc}	Fundamental reactive weights' component	34
25	PCC	Point of interconnection		of load of a, b, c phases	35
26	MPPT	Maximum power point tracking	w_{lq}	Averaging of the fundamental reactive	36
				weight component of load of a, b, c phases	37
	 Avdhesh Kumar iesavd@gmail.com Rachana Garg rachana16100@yahoo.co.in Priya Mahajan 		$\mathcal{V}_{sa}, \mathcal{V}_{sb}, \mathcal{V}_{sc}$	Phase voltages of a, b, c phases	38
			V_{dc}	DC-link voltage	39
			V_{dc}^*	Reference DC-link Voltage	40
			K_{pd}, K_{id}	Gains of PI controller of DC link	41
			K_{pa}, K_{ia}	PI controller's gain AC side	42
	priyamahajan.e	eed@gmail.com	w_{dc}	DC loss weight	43
			w_{ac}	AC loss weight	44
	¹ Electrical Engi	neering Department, Delhi Technological	$G_c(S)$	Transfer function of the proposed control	45

27