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Abstract : With the increased penetration of photovoltaic 
(PV) based distributed generation (DG), power quality (PQ) 
at the point of common coupling (PCC) becomes a major 
concern mainly due to harmonics. Harmonics, generated by 
nonlinear loads in the system, are multiples of fundamental 
frequency. This paper presents the comparative analysis and 
discussion of various control techniques for VSC of a grid 
connected PV based micro grid to mitigate the harmonics. 
The mitigation of harmonics is achieved using control 
techniques viz. conventional and adaptive of reference 
generation. Simulation of the developed model is carried out 
on MATLAB/Simulink. Performance of the system is 
evaluated under IEEE-519 standard. 
 
Keywords—Power Quality (PQ), Power Factor Correction 
(PFC), Total Harmonic Distortions (THD), Voltage Source 
Converter (VSC) 

 
I. INTRODUCTION 

The increasing penetration of solar photovoltaic (SPV) 
system in utility grids, degrades power quality (PQ) at the 
point of common coupling (PCC) is becoming a major 
concern. Harmonics are generated either by nonlinear local 
loads or power electronics converter used in the PV based 
microgrid system [1-4]. The integration of PV system 
requires voltage source converter (VSC), switching of these 
converters generates harmonics at the output of microgrid. In 
the present study, harmonics generated due to local loads 
only are mitigated using different control algorithm of VSC 
[5]– [7]. In [8] authors have reported that a phase locked 
loop (PLL) is required to transform three phases to 
synchronous frame in SRF based control but sometimes it 
shows computational delay and also it has to be tuned 
preceding to its operation. In [9] authors reported that, in the 
implementation of IRPT and PBT, reference current is 
estimated using voltage and current of the PCC, so 
fluctuation in voltage will reflect in the reference current. 
While unit template is simplified form of adaptive LMS 
algorithm. Adaptive LMS suffer from fluctuations and less 
accuracy in estimating mean square error (MSE). In [10] 
authors reported that in the past few decades, adaptive 
control algorithms have been proposed for many 
applications. Among them, the least mean square (LMS) 
algorithm is the distinguished one. Due to its simplicity, 
conventional LMS adaptive control has been implemented 
widely but the performance is often unsatisfactory because of 
poor dynamic performance, due to compromise between 
tracking capability and accuracy in fixed step size. 

In this paper, PV based microgrid has been integrated to grid. 
VSC is controlled using both conventional techniques viz. 
synchronous reference frame (SRF), instantaneous reactive 
power theory (IRPT), unit template, power balance theory 
(PBT) and adaptive Least mean square (LMS) technique 
[11]–[16]. MATLAB/Simulink software has been used for 
modelling and simulation of these algorithms. The efficacy 
of control algorithm of VSC shows the efficient operation of 
the grid integrated PV system. VSC maintain unity power 
factor at grid by supplying reactive power demand of load 
along-with active power. Further, in case of unbalanced 
loads, VSC maintain the grid currents balanced by supplying 
current to unbalance loads as per each phase requirement and 
also eliminates the harmonics in the grid current. 
 

 
Fig.1 System configuration 

 
II. SYSTEM CONFIGURATION 

Fig. 1 depicts proposed system configuration. A 10.25kW 
SPV system has been integrated to grid. Various parameters 
of the system are given in the appendix. The proposed 
system consists of a SPV array, dc-dc (boost) converter, 
VSC and consumer loads. As power from PV array is not 
constant and changes with environmental conditions, 
therefore to get the maximum efficiency of SPV array, 
Perturb and observe MPPT algorithm is used [17]–[20]. DC 
link voltage obtained after boost converter is converted to ac 
voltage of required magnitude and frequency using VSC.  
 

III. VSC CONTROL ALGORITHMS 
A. SRF Control algorithm 
Fig. 2 represents the block diagram of reference current 
estimation using SRF control algorithm under UPF mode of 
operation. Park’s transformation has been used to convert 
load current components from synchronous rotating 
reference frame to d-q reference frame. 
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Fig. 2 SRF control algorithm  

 
Three phase current in the a-b-c frame is transformed into d-
q-0 frame by means of Park's conversion as given below: 

�������
� = �	 
cos � � cos (�� − 120) cos (�� + 120)sin �� sin (�� − 120) sin (�� + 120)1/2 1/2 1/2 � ����������

�  

                                                                                              (1)                                                                         
 PI controller, is used to maintain the voltage across dc link. 

fundamental active  (��) and reactive (��) component of load 

currents are extracted by means of low pass filter. VSC must 
supply the reactive power demand of the load to operate the 
SRF algorithm in unity power factor mode. Reference reactive 

component  (��∗ ) must be zero(��∗ = 0 ), to compensate the 

reactive demand of the load. While (��)  is added with output 

of PI controller (���!"") in order to regulate the dc link voltage.  ��∗ =#�+ ���!""                                                                                                            (2)                                                                                                                                                                  

Further converting the reference signal from d-q frame to a-
b-c by means of inverse parks transformation, provides 

reference current ( �"�∗ , �"�∗ , �"�∗ ). 
Generated reference current (i*

sabc) must be in same phase 
with grid voltage, using reverse Park’s conversion as 
represented below, i*

sabc are obtained:  


�"�∗�"�∗�"�∗ � = � %&' �� sin �� 1cos (�� − 120) sin (�� − 120) 1cos (�� + 120) sin (�� + 120) 1� �������
�          (3)                                                                                         

 Reference current are compared with sensed grid current (�"� , �"�,�"�) in hysteresis control and generate switching 

signals to operate VSC [8-12].  

B. IRPT Theory of Inverter Control 

Fig. 3 depicts the block diagram representation of IRPT 
control algorithm of reference current. In this control Clark’s 
transformations are used to converts the PCC voltage and load 
current in to α-β frame respectively as given below:  

()*)+, = √(2/3) /1 −1/2 −1/20 √3/2 −√3/20 �)"�)"�)"� �                        (4) 

/�1*�1+0 = √(2/3) /1 −1/2 −1/20 √3/2 −√3/20 ��1��1��1�
�                       (5) 

Instantaneous magnitude of active power ( 21) and reactive 

power (31) are computed using the equations (6) and (7) as 
given below:  21 =  )*�1* + )+�1+                                                               (6) 

31 =  )*�1+ + )+�1*                                                                (7) 

(2131, = /21444  +21531444  +2150                                                                 (8) 
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Fig. 3 IRPT control algorithm  

    
Computed power contains both dc and ac component. To filter 
out the fundamental power components, low pass filters are 
used. Reference active and reactive component of power is 
estimated using Eq. given below: 2∗= 21444 +  2�!""                                                                        (9) 3∗= 31444 + 367                                                                           (10) 

Reference current ( �"�∗ , �"�∗ , �"�∗ ) is estimated as given below: 


�"�∗�"�∗�"�∗ �=√(2/3) 
 1 0−1/2 √3/2−1/2 −√3/2� 8 )* )+−)+ )*9:; /2∗3∗0          (11)                           

In PFC mode reference reactive power component (3∗) should 
be zero to maintain the grid at unity power factor. Reference 

current are compared with sensed grid current (�"� , �"�,�"�) in 

hysteresis control and generate switching signals to operate 
VSC [13-15]. 

C. Unit template Control algorithm 
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Fig.4 Unit template control algorithm  

 
Unit template control algorithm of VSC for estimating the 
reference currents shown in Fig.4.The unit template is a 
simple VSC control technique for estimating the reference 
current. This control algorithm can be made flexible and it 
can be modified either for PFC or voltage regulation at PCC. 
The unit template control algorithm in PFC mode of 
operation is performed to estimate reference current as shown 
in the fig. 4. PCC voltage and DC bus voltage of VSC are 
used for implementing this control algorithm. A band-pass 
filter (BPF) can be used to remove distortion in sampled PCC 
voltages in real time implementation. Assume that after 

filtering the PCC voltage signal is (  )"� , )"� , )"� ). Peak 
amplitude of PCC voltage is calculated as: 

<"= =  >�	 (<"�� + <"�� + <"�� )                                                (12) 
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The in-phase unit voltages template (?=� , ?=� , ?=�) can be 

calculated using phase voltages (<"� , <"� , <"� ) with peak 

amplitude(<"=) as follows: ?=� = <@A<@B  , ?=� = <@C<@B , ?=� = <@D<@B                                     (13) 

Further, error in DC link voltage is compensated using PI 
controller. Output of PI controller is considered as amplitude 

of reference current E�"==∗ F  . Amplitude of reference 

current(�"==∗ ) are multiplied by in- phase unit template to get 

reference current ( �"�∗ , �"�∗ , �"�∗ ) as given below: �"�∗ = �"==∗ ?"�, �"�∗ = �"==∗ ?"� , �"�∗ = �"==∗ ?"�                    (14) 

Reference current ( �"�∗ , �"�∗ , �"�∗ )  are compared with sensed 

grid current (�"� , �"�,�"�) in hysteresis control and generate 

switching signals to operate VSC. 

D. Power balance theory control algorithm 
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Fig.5 Power balance theory-based control algorithm  

 
Fig. 5 depicts the block diagram representation of PBT 
control algorithm for generation of reference current. In this 
control, instantaneous power consumed by the loads can be 
utilized to extract of fundamental components of load 
currents. This algorithm sense the load currents, DC bus 
voltage, PCC voltage and grid current of proposed system. 
DC link PI controller output is added with fundamental active 
power component of load current as in eqn. (17) to regulate 
DC link voltage and to estimate the fundamental active power 
component of reference supply current. Eqn. (18) and (20) are 
used to compute instantaneous power (active and reactive) 
component of reference currents. Further to get reference 
current, in phase and quadrature reference current added 
together by taking respective phases. 

The peak amplitude of voltage (<G)of grid voltage, can be 
calculated by: <G =  >�	 (<"�� + <"�� + <"�� )                                               (15) 

The in-phase unit template voltages (?=� , ?=� , ?=�) can be 

calculated from phase voltages (<"� , <"� , <"�) and peak  

 amplitude (<G) as follows: ?=� = <@A<H  , ?=� = <@C<H , ?=� = <@D<H                      (16)                                                                     

The reactive/orthogonal/quadrature unit templates ( ?��  , ?�� , ?�� ) can be obtained from in phase unit template 

voltages as follows:  

I�� = − JBC√	 + JBD√	  , I�� = √	 JBA� +  EJBC:JBDF�√	 ,  I�� =
− √	 JBA� + EJBC:JBDF�√	                                                              (17) 

The instantaneous active and reactive powers of the load are 
calculated as: 21 =  )"��1� + )"��1� + )"��1� = 21444 +  215                      (18)           31 = √(1/3)[()"� − )"�)�1� + ()"� − )"�)�1�+ ()"� − )"�)�1�]       = 31444 +  315                                                                   (19)            
Fundamental power (active and reactive) component of the 
loads are extracted by means of LPFs from instantaneous 
powers. 
Amplitude of active power fundamental component of load 
currents is estimated from average load power. M1= = (2/3)( =N4444<@B)                                                                   (20) 

Moreover, amplitude of reactive power fundamental 
component of load currents is estimated from average load 
power: M1� = (2/3)( �N4444<@B)                                                                  (21) 

Output of the DC voltage PI controller(���!"") of the proposed 
system is added with fundamental active power component 

of load currents (M1= ) to estimate amplitude of the active 

power component of reference supply currents as given 
below: M"= = ���!"" + M1=                                                              (22)         

In-phase unit templates of respective phases is multiplied by 

amplitude component of the active power (M"=) of reference 

supply current. The instantaneous fundamental active power 
component (in-phase) of reference supply 

currents(�"=�∗ , �"=�∗ �"=�∗ ) are given as:  �"�=∗ = M"= ∗ ?=�;  �"�=∗ = M"= ∗ ?=�;  �"�=∗ = M"= ∗ ?=�     (23)            

Similarly, amplitude estimation of fundamental component 

of reactive power ( M"� ) of reference supply currents is 

estimated is given in the eqn. below: M"� = 367 − M1�                                                                  (24)         

Further to get instantaneous values of the fundamental 
reactive power component of reference supply currents, 
amplitude of fundamental reactive component is multiplied 
by quadrature unit templates. Instantaneous quadrature 

reference current (�"��∗ , �"��∗ , �"��∗ ) are given as: �"��∗ = M"� ∗ ?��;  �"��∗ = M"� ∗ ?��; �"��∗ = M"� ∗ ?��         (25)   

The adding in-phase and quadrature reference supply current 
will give the instantaneous fundamental reference supply 
currents as given: �"�∗ = �"�=∗ + �"��∗ , �"�∗ = �"�=∗ + �"��∗ , �"�∗ = �"�=∗ + �"��∗          (26) 

Further reference current ( �"�∗ , �"�∗ , �"�∗ )  are compared with 

sensed grid current (�"� , �"�,�"�) in hysteresis control and 

generate switching signals to operate VSC. 

E. Adaptive LMS Control algorithm 

LMS control technique computes the reference currents to 
generate pulses for VSC conduction as demonstrated in Fig. 
6. Control algorithm is described as follows: 
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epa= iLa - upa(n)*wpa(n);

wpa(n+1) = wpa(n) +u(n)*epa(n) ;

i*sa = was * upa

epb= iLb - upb(n)*wpb(n);

wpb(n+1) = wpb(n) +u(n)*epb(n) ;

i*sb = was * upb

epc= iLa - upa(n)*wpa(n);

wpa(n+1) = wpa(n) +u(n)*epc(n) ;

i*sc = was * upc
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Fig. 6 Adaptive LMS Control algorithm  

Estimation of in phase and unite templates of voltages 

The peak amplitude of voltage (<G  ) of grid voltage, which can 
be calculated by: <G =  >�	 (<"�� + <"�� + <"�� )                                                     (27)                                                                                                                 

The in-phase unit voltages template (?=� , ?=� ,?=�) can be 

calculated by the relation of phase voltages (<"� , <"� , <"�) 

with peak amplitude (<G) voltages as follows [20]: ?=� = <@A<H  , ?=� = <@C<H , ?=� = <@D<H                      (28)                                                                                  

 

Estimation of active weight using LMS control algorithm 

Error in active component of load current in each phase 

(P=�;  P=�;  P=�) at nth instant is estimated as using in-phase 

unit template ( ?=� , ?=� , ?=� ) and active load current 

component (�=�; �=�; �=�)as follows: P=�(Q) =  �1�(Q) − I=� ∗ �=�(Q)                                              (29)                                                                                             P=�(Q) =  �1�(Q) − I=� ∗ �=�(Q)                                           (30)                                                                               P=�(Q) =  �1�(Q) − I=� ∗ �=�(Q)                                              (31)                                                                               

The fundamental active weights �=�, �=� , �=�  at (n+1) 

instant be computed as: �=�(Q + 1) =  �=�(Q) + µ(Q) ∗ P=�(Q)                   (32)                                                                       �=�(Q + 1) =  �=�(Q) + µ(Q) ∗ P=�(Q)                                (33)                                                                              �=�(Q + 1) =  �=�(Q) + µ(Q) ∗ P=�(Q)                                 (34)                                                               

The average   fundamental active weight components can be 
computed as: ��= =  ESBATSBCTSBDF 	         (35) 

The sensed voltage of dc-link ( U�� ) is compared with 

reference dc bus voltage (U��∗ )  to estimate error in DC link 
voltage and compensated using proportional integral (PI) 
controller. The output of the controller is dc loss weight 

(���).  

The total active weight ( �=" ) component of the supply 

reference current is given by: �=" = ��= + ���                                                               (36)                                                                            

The active in-phase reference supply current can be evaluated 
as: �"�∗ = �="?=�, �"�∗ = �="?=� , �"�∗ = �="?=�                   (37)                                                                  

 

Generation of switching signal for VSC 

Reference current ( �"�∗ , �"�∗ , �"�∗ )  are compared with sensed 

grid current (�"� , �"�,�"�) in hysteresis control and generate 

switching signals to operate VSC. 

IV. RESULTS AND DISCUSSIONS 

To analyze the efficacy of various control algorithms under 
nonlinear load, a bridge rectifier has been considered with RL 

load (R=100 Ω, L=100 mH). Further, to create the unbalance 
in the load, one phase is kept open from 0.15 to 0.25 seconds. 
Proposed system is supposed to be working at standard test 

condition (1000w/m2, 250C). Proposed system is conducted 
in PFC mode of operation. 

A. Performance of Various Control algorithm 

Simulation results using various control algorithms under 
nonlinear(balance/unbalance) load are given in the Fig.7. To 
impose the unbalance between 0.15 to 0.25 second one phase 
is kept open. It can be seen from Fig. 7 that all the algorithms 
are efficient in maintaining the grid current sinusoidal and 
balanced for the unbalance load current between 0.15 to 0.25 
sec. Fig 8 shows the grid current waveform and THD. It can 
be seen from Fig 8 (a) and table I, that load current THD is 
29.28% while grid current THD is well within the IEEE 
standard-519. 
 

 
(a) Grid integrated microgrid under SRF control 

 

 
(b) grid integrated microgrid under IRPT control 
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(c) Grid integrated microgrid under unit template control 

 

 
(d) Grid integrated microgrid under PBT control 

 
(e) Grid integrated microgrid under adaptive LMS control 

Fig. 7(a), (b), (c), (d) and (e) 

B. Grid curent waveform and THD under nonlinear load 

 
(a) Grid current waveform and THD before compensation 

 

 
(b) Grid current waveform and THD after compensation using SRF 

control 

 

 
(c) Grid current waveform and THD after compensation using 

IRPT control 

 

 
(d) Grid current waveform and THD after compensation using unit 

template control 

 

 
(e) Grid current waveform and THD after compensation using PBT 

control 
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(f) Grid current waveform and THD after compensation using 

LMS control 
Fig.8(a), (b), (c), (d), (e) and (f) 

 

It can be seen from table I, that harmonics in grid current is 
minimum in case of SRF, while adaptive LMS provides 
slightly higher than SRF and less than other algorithm. 
Implementation of adaptive LMS is simplest than other, but 
advance type of adaptive LMS control can offer the best 
performance towards harmonics mitigation. 

TABLE I.   

S.N. 
THD in grid current 

Control algorithms THD 

1 SRF 1.85 

2 IRPT 2.29 

3 Unit template 2.92 

4 PBT 3.16 

5 LMS 1.92 

 

Conclusion 

In this paper, different conventional and adaptive LMS 
control algorithms have been implemented for controlling the 
PV base microgrid. The performance of the control algorithm 
is tested under nonlinear (balanced/unbalanced) load at STC. 
It has been observed that under different control, of VSC, 
microgrid operation is efficient and THD in grid current is 
maintained within limit along with UPF operation. 
Comparative analysis of different control algorithm under PV 
grid integration depicts that harmonics in grid current is 
minimum i.e. 1.85% in case of SRF while adaptive LMS 
offers minimum complexity in implementation and provides 
almost similar 1.92% THD in the grid current. 
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Appendix 
Simulation Parameters of the system: Grid voltages: 415 V, frequency (f): 
50 Hz, Line impedances (Rs, Ls): 0.01Ω, 0.1mH, Interfacing inductor (Lf): 
7mH, Vdc(ref.): 750 V; sampling time Ts = 5.5μs 
Solar PV parameters: nominal power 10.25 kW, nominal voltage at MPP: 
410V, nominal current: 25 A,  
DC-DC (boost) converter parameters:  Duty cycle (D): 0.43, Switching 
frequency (fs): 10 kHz, Inductor (L): 0.5mH, Capacitor (C): 1000µF, 
Nonlinear load: bridge rectifier R=100Ω, L=100mH (unbalancing imposed 
between 0.15 to 0.25sec)   
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