
International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 39

IDENTIFYING THE RELATIONSHIP BETWEEN ORIGINAL AND
REFINED POP METRIC FOR OO SOFTWARE
#1Vijay Yadav , #2Dr. Vibhash Yadav ,#3Prof. Raghuraj Singh

#1Assistant Professor (CSE), Kanpur Institute of Technology, Kanpur, UP India.
#2Assistant Professor (CSE), Kanpur Institute of Technology, Kanpur, UP India.

#3Assistant Professor (CSE), KIT, Sultanpur, UP India.
#1vijayyadavuiet@gmail.com,#3 raghurajsingh@rediffmail.com

ABSTRACT

Most of the researchers have worked for size

and effort evaluation but still the problem

has not been fully resolved. Many of the

existing evaluation techniques work

specifically for specific development

environment. PRICE systems has developed

the predictive object point (POP) metric for

predicting effort required for developing an

object oriented software system and is based

on the counting scheme of function point

(FP) method. Though it was an interesting

theoretical development, but due to absence

of an easy to use support tool and too much

complicated formulations, it could not gain

sufficient recognition from practitioners to

be use on a regular basis. In this paper, it is

tried to show the relationship between the

original POP and the refined POP

formulations for POP calculation. This

relationship helps in simplifying the POP

count formula and preliminary results of its

application in an industrial environment are

presented and discussed here for validation

of the suggested simplification in

measurement of POP metric.

Index Terms: Software Measurement,

Object Orientation, Functional size

measurement, Software Metrics, Predictive

Object Point, and Automation.

1. INTRODUCTION TO POP METRIC

POP was introduced by Mickiewicz in 1998.

PRICE systems [8] has developed the POP

metric for predicting effort required for

developing an object oriented software

system. POPs are suitable metrics for

estimating the size and subsequently the

effort required for development of object

oriented software [10].It was designed

specifically from results on measurement of

the object-oriented properties for Object

oriented software systems. It fulfilled almost

all the criteria of OO concepts and was

based on the counting scheme of function

point (FP) method as used in

function/procedure oriented software

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 40

development environment [1]. POPs are

intended as an improvement over FPs by

drawing on well-known metrics associated

with an object oriented system [11].

2. CACULATION PROCSS OF POP

METRIC

The following metrics are necessary for

object-oriented systems in POP Count:

Number of top level classes (TLC), Average

number of weighted methods per class

(WMC),Average depth of inheritance tree

(DIT), and Average number of children per

base class (NOC). WMC, DIT, and NOC are

taken from the MOOSE metrics suite [3][5].

These metrics are then used to form the

equation (1), giving the number of POPs for

a system [8].

f 1(TLC, NOC, DIT) TLC*(1 ((1NOC)*DIT
)1.01(| NOCDIT|).01)

f 2(NOC,DIT)1.0 (1)

POPs(WMC, NOC, DIT
, TLC)

WMC* f 1(TLC,
NOC, DIT)

* f 2(NOC,
DIT)

7.8

Where, f1 attempts to size the overall

system, and f2 applies the effects of reuse

through inheritance.

3. SUGGESTED RELATIONSHIP

BETWEEN ORIGINAL POPAND

REFINED POP

An easy to use automation tool APA

(Automated POP Analyzer) is built for

counting POPs by splitting the whole Java

Project into files and calculating POP on the

basis of its individual java file. In the True

OO environment as in java projects, the

level of reusability through Inheritance is

always considered to be high and hence

function of NOC and DIT can be considered

as 1.0 [2]. Thus the correction factor f2 taken

by Mickiewicz [8] can be omitted while

estimating Java projects. However this may

not be true for other environments.Thus the

factor |NOC-DIT|.01 may be omitted and f2

may be neglected while calculating POP

Count values for Java Projects. The POP

Count formula may be reduced to the

equation (2).

.01 f 1(TLC, NOC, DIT) TLC * (1 ((1 NOC) * DIT)) 1.01

(2)

WMC * f 1(TLC, NOC, DIT)

POPs(WMC, NOC, DIT, TLC) 7.8

Further the simplification in POP count

formula has been suggested and validated by

the introduction of the new OO metric AWC

(Average Weighted Method Count) which

can be used to replace the WMC (Weighted

Method Count) metric as shown in equation

(3).

WMC=AMC ×10.478 (3)

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 41

which involves very rigorous method of

calculation [1]. In this paper it has been tried

to identify the relationship between Original

POP count which is calculated by using

equation (1) and the Refined POP count

which is calculated from equation (2). This

can be used for java projects. However this

may not be true for other environments[1].

4. POP COUNT ESTIMATION PROCES

The following process was followed for

calculation of POP Count:

A. Step 1: The first step was to obtain the

Source Lines of Code (SLOC) metric for

projects through APA tool [4] based on

CCCC, an object oriented metric gathering

tool [7].

B. Step 2: Using the generated DIT metrics

for each class it was possible to calculate the

average DIT (one of the metrics required for

POPs). Similarly the generated NOC metrics

for each class were averaged to obtain the

average NOC.

Average NOC = (Sum of Base Class NOCs)

/ (Number of Base Classes giving +ve NOC

count.)

Average DIT = (Sum of Classes having

DITs) / (Sum of the rows of NOC and DIT

giving +ve count).

C. Step 3: Average Method count (AMC) is

calculated by dividing the method count by

the class count [4].

D. Step 4: The TLC metric for each java file

and for overall project was then calculated.

This includes the base classes (with no

parents) and the class which is at level 0.

This metric is a count of the classes that are

roots in the class diagram, from which all

other classes are derived [8].

E. Step 5: Finally WMC is calculated as

suggested by Minkiewicz [8]. As in order to

determine the average number of methods in

each type, weightings should be applied

against this as per the following calculations

[9]:

Average Constructor/Destructor Method

Count = 20% (Average Methods per Class)

Average Selector Method Count = 30%

(Average Methods per Class)

Average Modifier Method Count = 45%

(Average Methods per Class).

Average Iterator Method Count = 5%

(Average Methods per Class).

Now, each method type was divided into

three categories of complexity using

weightings. This spread of method types

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 42

arose from a manual investigation of source

code by Minkiewicz [8].

Low Complexity Method Count = 22% of

Average Method Count

Average Complexity Method Count =

45% of Average

Method Count High Complexity Method

Count = 33% of Average Method Count

For each java file all twelve calculations

were performed and their sum gives the

value of WMC [9]. The same method is

used for the calculation of WMC for the

overall project.

5. DESCRIPTION OF EMPIRICAL

STUDY

The proposed relationship between

Original POP and Refined POP count for

Java Projects can be validated, under this

study, 62 projects including 2 projects from

research work of T. R Judge and A.

Williams [6] as shown in Table 1 have

been considered.

Project Project Name Original Refined Ratio

No. POP POP Ori/Ref

1. ATM_Banking_Sys 119.2381 82.9576 1.44

2.* Band_Width_Esti 302.831 190.4707 1.59

3.* Face_Detection_Syst 50.0243 31.2973 1.59

4. Face_Id 173.9161 112.7132 1.54

5.* Face_book_Like_Chat 156.554 99.0489 1.58

6. Flight_Reserv_System 86.4455 57.7633 1.50

7. JaimBot_Ver_1.2 561.852 379.1025 1.48

8. JaimBot_Ver_1.2.1 597.89 403.0064 1.48

9. JaimBot_Ver_1.3 661.55 444.0895 1.49

10. JaimBot_Ver_1.4 1000.88 674.1781 1.48

11. JaimLib_Ver_0.4 903.65 581.582 1.55

12. JaimLib_Ver_0.5 910.797 586.0526 1.55

13.* Library_Mgt_Sys 386.61 236.6697 1.63

14. Library_Sys 411.611 262.5484 1.57

15.* Medical_Diag_Sys 187.27 117.7235 1.59

16.* Mobile_Pay_Service 924.84 585.1817 1.58

17. Online_Address_Book 160.829 107.4667 1.49

18.* Payroll 312.3165 191.1587 1.63

19.* Civil_Game_Java 510.9983 318.3434 1.60

20. Remote_Adm_Sys 41.54 26.8449 1.55

21. PhysicsMata_ver_0.1.2 44.2279 29.5533 1.50

22.* PhysicsMata_ver_0.3.0 128.64 79.1175 1.63

23.* PhysicsMata_ver_0.3.1 128.64 79.1175 1.63

24.* PhysicsMata_ver_0.4.1 208.712 133.1823 1.57

25. PhysicsMata_ver_0.5.0 249.2617 159.7175 1.56

26. PhysicsMata_ver_0.5.1 253.2828 162.4041 1.56

27.* PhysicsMata_ver_0.5.2 698.737 429.7375 1.63

28. PhysicsMata_ver_0..6.0 24.124 16.12 1.50

29. PhysicsMata_ver_0..6.1 24.124 16.12 1.50

30. PhysicsMata_ver_0.8.0 24.124 16.12 1.50

31. PhysicsMata_ver_0.8.1 24.124 16.12 1.50

32. PhysicsMata_ver_1.2.0 56.29 37.6133 1.50

33. PhysicsMata_ver_1.2.1 56.29 37.6133 1.50

34. JavaGeom_ver_0.3.0 2242.0278 1452.1516 1.54

35. JavaGeom_ver_ 0.3.2 2417.585 1566.2636 1.54

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 43

36. JavaGeom_ver_0.5.0 2543.312 1635.5748 1.55

37. JavaGeom_ver_ 0.5.2 3191.8688 2036.503 1.57

38. JavaGeom_ver_0.5.1 2539.5093 1631.7403 1.57

39. JavaGeom_ver_ 0.6.0 2845.0487 1833.1131 1.55

40. JavaGeom_ver_0.6.2 2876.133 1864.2768 1.54

41. JavaGeom_ver_ 0.6.3 3439.5835 2205.3822 1.56

42.* JavaGeom_ver_0.7.0 4521.7321 2793.9842 1.62

43.* JavaGeom_ver_ 0.7.1 4580.0669 2829.5591 1.62

44.* JavaGeom_ver_0.8.0
3952.0215

3 2432.8656 1.62

45.* JavaGeom_ver_0.8.1 4357.4644 2677.6644 1.63

46. Lwjgl_alpha_0.3 1256.5475 824.808 1.52

47. Lwjgl_0.4 1705.7530 1125.2742 1.52

48. Lwjgl_0.5 1380.0746 907.6542 1.52

49. Lwjgl_0.6 2222.9296 1434.6609 1.55

50.* Lwjgl_0.92 3978.5015 2464.6488 1.61

51.* Lwjgl_0.93 4001.2856 2479.8732 1.61

52.* Lwjgl_0.95 5526.3933 3452.9299 1.60

53.* Lwjgl_0.96-2 6914.9014 4348.3864 1.59

54.* Lwjgl_0.97-1 6941.0338 4365.1641 1.59

55.* Lwjgl_0.98-1 6915.5922 4355.0044 1.59

56.* Lwjgl_0.99 7140.7526 4505.4578 1.58

57.* Lwjgl_1.0 7805.3684 4926.3582 1.58

58.* Lwjgl_1.0beta4 7777.6232 4910.0088 1.58

59.* Lwjgl_1.0 -rc1 7792.5040 4918.8552 1.58

60.* Lwjgl_1.1 7751.8859 4889.5221 1.59

Table 1: Projects analyzed to study

Relationship between Original and Refined

POP

The Project marked with * in corresponding

S. No. give approx value of 1.6 to the ratio

of Original and Refined POP.

Execution of the project javaGeom-0.5.2-src

shown in Fig.1.1 and Fig.1.2 on

APA(Automated POP analyzer) tool, this

tool is developed and automated by us for

analyzing the POP metric, The values of

Original POP and Refined POP are

highlighted as under the circled value in the

snapshot. The value of the Original POP for

this project is found to be 3191.8688 and the

value of Refined POP is 2036.503 as shown

in Fig 1.1 and Fig 1.2

Fig.1.1 Original POP Values

Fig.1.2 Refined POP values

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 44

Table 2: Summary of Project Metrics [6]

The proposed relationship between Original

POP and Refined POP formulations can

further be checked in reference to the

projects taken by T. R Judge and A.

Williams [6]. In their research work using

projects Alpha and Beta, they proved POP

metric as better indicator of software size in

comparison to FP metric as shown in Table

Project
Attributes

Project
Alpha

Project
Beta

Number of
refined POPs 8849.422

2006.151
5

Table 3:Refined POP Count for Projectsects

Project
Name

Origina
l POP

Refined
POP Ratio

Alpha 10478
8849.4

22 1.2

Beta 2566
2006.15

15 1.3

4

Table:4 Ratio of the Original POP and
Refined POP

On analyzing the above projects, it was

found that the ratio of the Original POP and

Refined POP most of the times comes out to

be approx 1.6 as seen from the Table 1.

Thus there can be a constant k whose value

may be approx 1.6 to give the relationship

between Original POP and Refined POP as

in equation (3).

The result from Table 5 gives the value of

the constant k to be 1.2 and 1.3 for projects

alpha and beta respectively. So from this it

can be assumed that the value of the

constant k will lies between 1.2 to 1.6.

Project Attributes
Project
Alpha

Project
Beta

Source Lines of Code (SLOC) 38854 20570

Total Number of Classes 404 147

Total Number of Methods 2412 833

Average of the Methods per
Class 5.971 5.667

Average Depth of Inheritance 0.941 0.701

Average Number of Children 3.700 2.688

Top Level Classes 201 73

Constructors/Destructors (20%) 1.194 1.133

Selectors (30%) 1.791 1.700

Modifiers (45%) 2.687 2.550

Iterators (5%) 0.299 0.283

WMC 62.564 59.379

Number of POPs Original 10478 2566

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 45

Hence this further validates the proposed

relationship between Original POP and

Refined POP count.

6. CONCLUSIONS

One of the factors that affected the adoption

of POP methods in practice was the lack of

support tools to help estimators in their

tasks. Another problem was the complicated

formulation of POP count. Here, in this

paper, the relationship between the Original

POP count and the Refined POP count

formula has been proposed through which

POP metrics calculations have been

simplified. The projects taken for empirical

study from research work of T. R Judge and

A. Williams [6], are also considered for

proposing the value of the constant k,

however the data to be studied may include

additional java projects. This will further

ensure the validity for this relationship for

Java Projects and hence accuracy of the

measurement.

REFERENCES

1. Er. Vijay Yadav., Dr. Vibhash

Yadav., Prof. Raghuraj

Singh,(2016),. “Introducing New OO

Metric For Simplification In

Predictive Object Points (POP)

Estimation Process in OO

Environment ”. International Journal

of Engineering Sciences & Research

Technology, ISSN : 2277-9655

(I2OR), Publication Impact factor:

3.785., Volume-5(1), Issue-

January,2016.

2. Shubha Jain, Vijay Yadav, Raghuraj

Singh., “Assessment of Predictive

Object Points (POP) Values for Java

Projects”. International Journal of

Advanced Computer Research (ISSN

(print): 2249-7277 ISSN (online):

2277-7970) Volume-3 Number-4

Issue-13 December-2013 Impact

Factor 1.863. Available

At:www.theaccents.org/ijacr/currenti

ssue.html. (Published).

3. Shubha Jain, Vijay Yadav, Raghuraj

Singh., “A Simplified Formulation of

Predictive Object Points(POP)

Sizing Metric For OO

Measurement”. IACC 2014 4th IEEE

International Advance Computing

Conference, Part Number

CFP1439F-CDR ISBN 978-1-4799-

2571-1, Feb 21st-22nd 2014, IEEE

Computer Society, Gurgaon,

India.(Published in IEEE Xplorer)..

4. Shubha Jain, Vijay Yadav and Prof.

Raghuraj Singh, (2013). “OO

Estimation Through Automation of

International Journal of Research Fellow for Engineering
Volume 4, Issue 11

www.ijrfe.com Page 46

Predictive Objective Points Sizing

Metric”., International Journal Of

Computer Engineering and

Technology (IJCET) Volume 4,

Issue 3, May- June (2013), pp. 410-

418Shyam R. Chidamber and Chris

F. Kemerer, ”A Metrics Suite for

Object Oriented Design”. IEEE

transactions On Software

Engineering, Vol. 20, No. 6, pp. 476-

493, June 1994.

5. T. R Judge, A. Williams, (2001),

“OO Estimation – an Investigation of

the Predictive Object Points (POP)

Sizing Metric in an Industrial

Setting”. Parallax Solutions Ltd,

Coventry, UK.,

6. CCCC Metric Tool by Tim Littlefair.

http://www.fste.ac.cowan.edu.au/~tli

ttlef/

7. Arlene F. Minkiewicz,(1997),

“Object-Oriented Metrics” Software

Development. Wiley Computer

Publishing, pp. 43-50,1997 at:

http://www.sdmagazine.com

8. Shubha Jain, Vijay Yadav and Prof.

Raghuraj Singh, (2013). “OO

Estimation Through Automation of

Predictive Objective PointsSizing

Metric”., International Journal Of

Computer Engineering

9. Shubha Jain, Vijay

Yadav, Raghuraj

Singh., ” An

Approach

10. International Conference on

“Computing for Sustainable Global

Development. Paper ID: 57, ISSN

0973-7529 and ISBN 978-93-80544-

10-6 serials, IEEE Conference ID

32558, IEEE sponsors: Delhi

Section, Other sponsor: Bharati

Vidyapeeth Institute of Computer

Applications and Management, New

Delhi, India. Available At:

www.bvicam.ac.in/indiacom/(Publis

hed)

11. Haugh M. E. W Olsen and Bergman.

L. “Software Process Improvement:

Metrics Measurement and Process

Modeling”, Vol. 4, New York,

Springer, pp. 159-170, 2001.

