
International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

410

OO ESTIMATION THROUGH AUTOMATION OF THE PREDICTIVE

OBJECT POINTS SIZING METRIC

Shubha Jain
1
, Vijay Yadav

1
 and Prof. Raghuraj Singh

2

1 Department of Computer Science & Engineering, Kanpur Institute of Technology, Kanpur

(India)

2 Department of Computer Science & Engineering, Harcourt Butler Technological Institute,

Kanpur -208001(India)

ABSTRACT

 To efficiently manage the resources various software characteristics like size, cost,

quality etc is being estimated through different techniques and during different phases of

software development. One of the techniques is function points measurement but inadequate

for object oriented software for prediction of efforts. PRICE Systems has developed a metric

called Predictive Object Points which was designed specifically for Object oriented software

and result from measurement of the object-oriented properties of the system. It fulfilled

almost all the criteria of OO concepts but it was not validated and has not adopted by industry

thus has not gained sufficient recognition from practitioners to be used on a regular basis.

Predictive Object points have been developed in the context of companies (e.g. Price

Systems). But no details about their actual usage in these companies are publicly available. In

this paper we discuss the theory behind POP, the problems with it and present an automation

tool for measuring Predictive Object Points with more accuracy. The tool and results of its

application in an industrial environment are presented and discussed.

KEYWORDS: Object Orientation, Software size Measurement, Software Metrics, Predictive

Object Point, Automation.

I INTRODUCTION

 With the rapid growth in software industries, corporate developers faced an

interesting conflict between two emerging trends: Object Oriented development and metrics.

They found that object oriented technology is, in many ways, incompatible with traditional

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING

& TECHNOLOGY (IJCET)

ISSN 0976 – 6367(Print)
ISSN 0976 – 6375(Online)
Volume 4, Issue 3, May-June (2013), pp. 410-418
© IAEME: www.iaeme.com/ijcet.asp
Journal Impact Factor (2013): 6.1302 (Calculated by GISI)
www.jifactor.com

IJCET

 © I A E M E

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

411

metrics. Good measurement program is the choice of good metrics. The metrics are

guidelines and not rules. They give an indication of the progress that a project has made and

the quality of the design [13]. Industries are still struggling with the question of what to

measure in their object oriented implementations.

 The Source Lines of Code (SLOC) metric and the Function Point metric were both

conceived in an era when programming required dividing the solution space into data and

procedures. This notion conflicts with the object-oriented paradigm. Traditional design

techniques separate data and procedures while object-oriented designs combine them. It is

important to measure the amount of raw functionality the software delivers, but it is equally

important to include information about communication between objects and reuse through

inheritance in the ‘size’ as well [1].

 Researchers studied ways to maintain software quality and developed object-oriented

programming in part to address common problems by strongly emphasizing discrete, reusable

units of programming logic. By the implementation of OOP the researchers modified and

validated the conventional metrics theoretically or empirically. Sizing and complexity metrics

were the most impressive contributions for effort and cost estimation in project planning

[2][12].

II POP – AN OBJECT-ORIENTED SOFTWARE SIZING METRICS

 POP was introduced by Minkiewicz in 1998 PRICE systems [1] has developed the

predictive object point (POP) metric for predicting effort required for developing an object

oriented software system. This was based on the counting scheme of function point (FP)

method. POPs are intended as an improvement over FPs, which were originally intended for

use within procedural systems, by drawing on well-known metrics associated with an object-

oriented system [3].

Predictive Object Points (POPs) [1] incorporate three dimensions of OO systems: the amount

of functionality the software delivers, communication between objects and reuse through

inheritance.

These aspects can then be used to give rise to a single metric in order to indicate the amount

of effort involved in the production of a software system. POPs are based on objects and their

characteristics.

Figure 1 - Aspects of an Object-Oriented System

Inter-object communication

Functionality

Reuse through inheritance

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

412

Abstract Model: POPs combine the following metrics presented in the literature to measure

object-oriented systems: number of top level classes (TLC), average number of weighted

methods per class

(WMC), average depth of inheritance tree (DIT), average number of children per base class

(NOC). WMC, DIT, and NOC are taken from the MOOSE metrics suite of Chidamber and

Kemerer [10].

Measurement process: The following formula was proposed to calculate the size of the

overall system[1]:

),(2*
8.7

),,(1*
),,,(

0.1),(2

)|)(|)*)1((1(*),,(1
01.01.1

DITNOCf
DITNOCTLCfWMC

TLCDITNOCWMCPOPs

DITNOCf

DITNOCDITNOCTLCDITNOCTLCf

=

=

−+++=

Equation 1 - POP formula

where, f1 attempts to size the overall system, and f2 applies the effects of reuse through

inheritance.

First, the WMC is calculated for each kind of method suggested by Booch [11]:

constructor/destructor, selector, modifier, and iterators. These methods are classified as

having a low, average or high complexity. Then, a weight is assigned depending on the

method’s complexity. To do this, the author proposed a complexity table for each method

type based on data collected from 20 developed software

systems. The complexity assignments are made considering the number of properties of the

method and the number of message responses. The total weighted methods per class are

calculated by summing the values obtained for each kind of method.

III POP METRICS AUTOMATION

 Unfortunately use of POP has been discontinued. This research was conducted nearly

20 years ago and has not been adopted by industry. Though it was an interesting theoretical

development, its use in real life was impractical as it required entirely too much detail for top

down estimation. POPs focus on implementation aspects and lack generalization. Also,

require detailed knowledge about system processing that is not available early enough for

accurate counting. A tool called Predictive Object Point Builder was built as an effort to

automate the measurement process but it has not been validated and hence not gained

sufficient recognition from practitioners to be used on a regular basis. Thus an easy to use

automation tool is required for counting POPs. It should be automated in a way so that it is

suitable for existing traditional metrics also and hence useful for industries.

 Here an Automation Tool APA (Automated POP Analyzer) for measuring Predictive

Object Points is prepared. The tool and results of its application in an industrial environment

are presented and discussed in this paper.

In building the tool, the following process was followed:

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

413

Step 1

The first step was to obtain the Source Lines of Code (SLOC) metric for projects. This was

achieved through the use of CCCC, an object oriented metric gathering tool. This is a free

metric tool for C++ and Java (CCCC) developed by Tim Littlefair [4].

Step 2
CCCC was once more used to obtain metrics necessary for the calculation of the POP metric.

Using the generated DIT metrics for each class it was possible to calculate the average DIT

(one of the metrics required for POPs). Similarly the generated NOC metrics for each class

were averaged to obtain the average NOC.

Average DIT = (Sum of Class DITs) / (Number of Classes with gives DIT count)

 Average NOC = (Sum of Base Class NOCs) / (Number of Base Classes which gives

NOC count)

Step 3
It was then necessary to determine for each project the number of methods of each method

type for use in the WMC calculation. In order to achieve this, the average method count per

class was found by dividing the method count by the class count. Sum of the WMC1 value

generated by CCCC is considered as the total number of methods and the sum of the classes

which gives WMC1 count is considered as the total number of classes. This was verified

from the result of Analyst4j Tool [9] which gives Average Weighted Method of class for a

Project equivalent to the value of AMC calculated below:

 Average Methods per Class = (Number of Methods) / (Number of Classes)

As in order to determine the average number of methods in each type, weightings should be

applied against this as per the following calculations[1]:

Average Constructor/Destructor Method Count = 20% (Average Methods Per Class)

Average Selector Method Count = 30% (Average Methods Per Class)

Average Modifier Method Count = 45% (Average Methods per Class)

Average Iterator Method Count = 5% (Average Methods per Class)

This spread of method types arose from a manual investigation of source code by

Minkiewicz[1].

Step 4
The TLC metric for each java file and for overall project was then calculated. The output of

CCCC is a set of where each row represents the metrics for a particular class. Only those

rows showing positive NOC counts were filtered i.e. the base classes. Sum of those base

classes is considered as the TLC.

Step 5
Finally WMC is calculated as follows:

First each method type was divided into three categories of complexity using weightings,

which arose from a manual investigation of source code, by Minkiewicz[1].

Low Complexity Method Count = 22% Average Method Count.

Average Complexity Method Count = 45% Average Method Count.

High Complexity Method Count = 33% Average Method Count.

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

414

 This observation indicates that for a given method type, 45% of the methods are of

average complexity, for example. At this stage, the average methods per class had been split

into four categories according to method type and these four categories had been split into

three further categories according to complexity.

 It then remained to apply weightings to each of the twelve categories, again using

values obtained from an examination of past project data by Minkiewicz[1].

 For each java file all twelve calculations were performed and their sum gives the

value of WMC. The same is calculated for the overall project also.

Finally POP count is computed according to the formula given in equation 1.

IV DESCRIPTION OF EMPIRICAL STUDY

 Two projects developed in java were selected from http://1000projects.org/ [8] have

been considered as inputs for the study. The first project is “Civilisation_game_java and the

other is Payroll system. For both the projects POP count was calculated through APA tool

considering the count of individual class as well as considering the project as a whole. The

results are compared with the POP count from the POP builder [1].

Table :1 Project: Civilisation_Game_Java (Analysis of Each Java File of Project)

 Through APA

Tool

Through POP

Builder

Java File Name NOM LOC Methods Classes AMC=

Methods

/classes

WMC POP WMC POP Actual

Effort

1. AboutPanel 7 28 2 1 2 20.96 16.19 0 0.0 0.056

 2. City 2 25 4 1 4 41.91 0.0 36 0.0 0.0499

3.CustomCellRend’r 7 222 2 1 2 20.96 16.19 0 0.0 0.494

4.CustomDataModel 3 18 4 1 4 41.91 16.17 36 13.9 0.035

 5. GameCore 6 64 6 1 6 62.87 0.0 63 0.0 0.134

 6. GWMap 2 1462 15 1 15 157.2 0.0 155 0.0 3.58

 7. LaughButton 4 46 4 1 4 41.36 16.17 36 13.9 0.095

 8. MainGUI 17 178 5 1 5 52.39 60.73 51 59.1 0.392

 9. MapCreation 6 70 1 1 1 10.49 4.05 0 0.0 0.147

10. MapPanel 13 1093 27 1 27 282.9 327.9 301 349 2.635

11. MiniMap 4 76 5 1 5 52.39 20.24 51 19.7 0.16

12. Nation 4 101 11 1 11 115.3 0.0 110 0.0 0.237

13. PlayMidi 8 58 4 2 2 20.96 8.099 0 0.0 0.12

14. ScreenManager 8 163 14 2 7 73.35 0.0 63 0.0 0.357

15. Unit 2 153 11 1 11 115.3 0.0 110 0.0 0.334

16.UnitInfoPanel 4 70 8 1 8 83.82 32.39 90 34.8 0.147

17. UnitTable 6 64 2 1 2 20.96 8.099 0 0.0 0.134

18. WorldPanel 5 230 14 1 14 146.7 56.68 133 51.4 0.513

Values through

APA Tool

considering each

file individually

108 4121 139 20 130

Avg:

7.22

1362.3

Avg:7

5.68

583.01 1235

Avg:

68.61

542 9.62

Over All Project

Value ignoring

individual file

 6.95 72.82 506.7 63 438 10.62

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

415

TABLE2: Project: Payroll_System (Analysis of Each Java File of Project)

 Through APA

Tool

Through

POP Builder

Java File Name NOM LOC Methods Classes AMC=

Methods

/classes

WMC POP WM

C

POP Actual

Effort

 1.AddWindow 15 209 4 1 4 41.91 32.39 36 27.8 0.464

 2.clsConnection 3 44 1 1 1 10.49 0.0 0 0.0 0.0903

 3. clsSettings 11 70 8 2 4 41.91 0.0 36 0.0 0.1471

 4. DeleteWindow 14 195 3 1 3 31.43 24.29 0 0.0 0.431

 5. EditWindow 15 246 4 1 4 41.91 32.39 36 27.8 0.55

 6.

Emprptwindow

16 489 4 1 4 41.91 32.39 36 27.8 1.132

 7. LoginFrame 16 137 5 2 2.5 26.20 20.25 0 0.0 0.298

 8. MainMenu 26 382 12 2 6 62.87 48.59 63 48.7 0.874

 9. PrintWindow 13 257 5 2 2.5 26.19 30.37 0 0.0 0.576

10.SettingWindo

w

18 718 14 1 14 146.7 170.1 133 154 1.69

Values through

APA Tool

considering each

file individually

147 2747 60 14 45

Avg:

4.5

471.5

Avg:

52.38

390.7 340 286.3 6.25

Over All Project

Value ignoring

individual file

 4.29 44.9 312.3

3

36 250.4 6.93

Figure 2: POP calculation for Payroll system through APA tool for individual java files

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

416

Figure 3: Overall Analysis of Payroll system through APA tool

V ANALYSIS RESULTS

 The following table provides the values for the SLOC, POP metrics from APA Tool

considering all files and actual effort for the two projects considered for the study.

Table 3: Summary of Project Metrics
Project Attributes Civilisation_game_java (Project A) Payroll System (Project B)

Source Line of Code (SLOC) 4121 2747
Total Java Files 18 10
Total Number of classes 20 14
Total Number of Methods 139 60
Average DIT 1 1
Average NOC 1 1
WMC 72.82 44.9
TLC 18 18
POP count from APA

considering each java file

individually

583 390.7

POP count from APA

considering whole project

together

506.47 312.33

POP count from POP builder

developed by Price system
438 250.4

Actual Effort 10.62 6.93

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

417

 Since the project size of both the projects considered for study is in the range 2-50

KLOC hence we considered them as organic type [6] [7] and used the below mentioned

formula for actual effort calculation:

Actual Effort = 2.4(KLOC)
1.05

 At this point we summarize the size in terms of SLOC, actual effort and estimation

through POP count. These statistics are presented as ratios:

(SLOC Project A) : (SLOC Project B) = 1.53

(Actual effort Project A) : (Actual effort Project B) = 1.532

 (POP through APA for overall Project A) : (POP through APA for overall Project B)

= 1.62

While considering individual java files:

(POP through APA for Project A) : (POP through APA for Project B) = 1.49

However POP count ratio through POP builder of price system =1.75

VI EVALUATION RESULTS

1. A system should be divided into several subsystems and each subsystem could be

divided into several stages according to time. This could be the refinement of use of

POP[2]. In our tool we split our systems or modules into sub modules as we have

calculated POP count of each project on the basis of its individual java file which gives

better results for the overall estimation of POP.

From the SLOC ratio it seems that project A is 1.5 times bigger than project B. From the

calculated efforts project A seems to take 1.532 times as many days to develop than

project B. When we compare with the similar ratio of POPs obtained from our APA tool

for overall project, the result is 1.62. However this is 1.49 when considering POP

calculation for individual java file, which is more close to efforts ratio. Hence by

considering each java file of a project for calculation of POP and then combining

the result give better estimation of effort and size of the project.

2. The POP count ratio obtained from the previous tool POP builder for the same projects is

1.75. As effort and POP count are proportional hence we can claim that our APA tool

gives more accurate POP count than the POP builder.

3. The previous POP builder made by Price system considered only those files of a project

for POP calculation whose AMC values comes out to be>= 3.72 otherwise the file is

ignored by the tool, by giving 0 POP count which is not the case in APA tool, hence give

more accurate result. This can be verified from Table 1 and 2 for certain java files.

4. Lastly, the APA tool is more user friendly, readily accessible to the user and having

better GUI to see more details for POP Calculation.

VII CONCLUSION AND FUTURE WORK

 Here an APA (Automated Predictive Object Point Analyzer) tool has been made. POP

metrics have been measured for two java projects through this tool. The results were analyzed

in terms of size and efforts. The conclusion that could be drawn from this study is that the

POP metric is a good indicator of software size which can be easily seen through the results

International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-

6367(Print), ISSN 0976 – 6375(Online) Volume 4, Issue 3, May – June (2013), © IAEME

418

of POP calculations of APA tool. Hence validate the POP metrics. This is so easy to use that

the tool would ease the introduction of POPs into an environment that currently has historical

data in terms of some more traditional metrics. It was felt during analysis of various projects

through APA that the POP count calculations can be simplified further to give more

understandability of the system and results should also been validated. Lastly, this study can

be followed up with another which includes the model necessary to map the POP metrics to

measure software cost and quality. Another future study prospect would be to have the data

set as projects with identical requirements done in different object oriented languages. This

would help us to ascertain that the POP metrics are capable of predicting the quality of

software across the object oriented language.

REFERENCES

[1] A.F. Minkiewicz, ”Measuring object-oriented software with predictive object points’,

Proc. ASM'97-Applications in Software Measurement, Atlanta.

[2] Dr. Rakesh Kumar and Gurvinder Kaur. Article: Comparing Complexity in Accordance

with Object Oriented Metrics. International Journal of Computer Applications 15(8):

42–45, February 2011.

[3] M.Haug, E.W. Olsen,L. Bergman,”Software Best Practices”, Springer 2001, Pg 159-

170.

[4] CCCC Metric Tool by Tim Littlefair. http://www.fste.ac.cowan.edu.au/~tlittlef/

[5] Tools Rüdiger Lincke, Jonas Lundberg and Welf Löwe, ”Comparing Software Metrics

Tools”, ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.

[6] Roger S. Pressman, Software Engineering – A Practitioner’s Approach, McGraw Hill

International Edition, 5
th

 Edition, 2001

[7] Ian Sommerville, software Engineering, Pearson Education Asia, 6
th

 Edition, 2000.

[8] http://sourceforge.net.(For java and c++ Projects)

[9] Analyst4j tool at http://www.codeswat.com

[10] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite fo Object Oriented Design",

IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476 -493, June 1994.

[11] G. Booch, Object Oriented Analysis with Applications - 2nd Edition. Redwood City,

CA, USA, Benjamin/Cummings Publishing Co. Inc., 1994,

[12] M. Xenos and D. Stavrinoudis and K. Zikouli and D. Christodoulakis, “Object-oriented

metrics – a survey”, proceedings of the FESMA 2000, Federation of European Software

Measurement Associations, Madrid, Spain, 2000.

[13] Lorenz Jeff Kidd,” Object Oriented Software Metrics : A Practical Guide, Prentice Hall,

Englewood, NJ.

[14] Arup Kumar Bhattacharjee and Soumen Mukherjee, “Object Oriented Design for

Sequential and Parallel Software Components”, International Journal of Information

Technology and Management Information Systems (IJITMIS), Volume 1, Issue 1,

2010, pp. 32 - 44, ISSN Print: 0976 – 6405, ISSN Online: 0976 – 6413.

[15] Anand Handa and Ganesh Wayal, “Software Quality Enhancement using Fuzzy Logic

with Object Oriented Metrics in Design”, International Journal of Computer

Engineering & Technology (IJCET), Volume 3, Issue 1, 2012, pp. 169 - 179,

ISSN Print: 0976 – 6367, ISSN Online: 0976 – 6375.

