
Reinforcement Learning Approach for Real Time Strategy

Games Like Battle City and S3

Harshit Sethya, Amit Patelb

aCTO of Gymtrekker Fitness Private Limited, Mumbai, India, Email: hsethy1@gmail.com

bAssistant Professor, Department of Computer Science and Engineering, RGUKT IIIT Nuzvid,
Krishna-521202 India, Email: amtptl93@gmail.com

In this paper we proposed reinforcement learning algorithms with the generalized reward function. In our
proposed method we use Q-learning and SARSA algorithms with generalised reward function to train the
reinforcement learning agent. We evaluated the performance of our proposed algorithms on two real-time
strategy games called BattleCity and S3. There are two main advantages of having such an approach as
compared to other works in RTS. (1) We can ignore the concept of a simulator which is often game specific
and is usually hard coded in any type of RTS games (2) our system can learn from interaction with any
opponents and quickly change the strategy according to the opponents and do not need any human traces
as used in previous works.

Keywords : Artificial Intelligence, Machine Learning, Real Time Strategy, Reinforcement Learning.

1. INTRODUCTION

Existence of a good Artificial Intelligence (AI)
technique in the background of a game is one of
the major factor for the fun and re-play ability
in commercial computer games. Although AI
has been applied successfully in several games
such as chess, backgammon or checkers when
it comes to real-time games the pre-defined
scripts which is usually used to simulate the ar-
tificial intelligence in chess, backgammon etc.,

[1]. does not seem to work. This is because
in real-time games decisions has to be made in
real-time as well as the search space is huge
and as such they do not contain any true AI
for learning [2].

Traditional planning approaches are difficult
in case of RTS games because they have var-
ious factors like huge decision spaces, ad-
versarial domains, partially-observable, non-
deterministic and real-time, (real time means
while deciding the best actions, the game con-
tinues running and states change simultane-
ously).

1.1. Real Time Strategy Games

Today game developing companies have
started showing more interest in RTS games.
Unlike turn based strategy games, where one
has the ability to take ones own time, in real
time strategy games, all movement, construc-
tion, combat etc., are all occurring in real time.
In a typical RTS game, the screen contains a
map area which consists of the game world with
buildings, units and terrain. There are usu-
ally several players in an RTS game. Other
than the players there are various game enti-
ties called participants, units and structures.
These are under the control of the players and
the players need to save their assets and/or de-
stroy assets of the opponent players by mak-
ing use of their control over the entities. We
are using 2 RTS games (1) BattleCity and (2)
S3 game for our evaluation. A snapshot of two
RTS games called BattleCity and S3 are given
in Figure 1.

1.2. BattleCity Game

BattleCity is a multidirectional shooter video
game, which can be played using two basic ac-
tions Move and Fire. The player, controlling

61

International Journal of Information Processing, 9(4), 61-79, 2015
ISSN : 0973-8215
IK International Publishing House Pvt. Ltd., New Delhi, India

62 Amit Patel and Harshit Sethy

a tank, must destroy enemy tanks or enemy
base and also protect its own base. Player can
move tank in four directions (left, right, up and
down) and fire bullets in whichever direction
the tank last moved, while bases are static.
There are three types of obstacle. (1) Brick
wall tank can destroy it by firing this type
wall. (2) Marble wall tank cant destroy it by
firing. (3) Water bodies tank can fire through
it. Tank cant pass through any of above obsta-
cle. Only brick wall can be destroyed by tank
so after destroying tank can pass through it.

1.3. S3 Game

S3 is a real-time strategy game where each
players goal is to remain alive after destroy-
ing the rest of the players. Four basic actions
in this game are Harvest : i.e., to gather re-
sources (gold and wood), Build : to build build-
ings (Barrack, Blacksmith, Tower etc.) ,Train:
to produce troops (archers, footmen, catapults,
knights), Attack : for attacking enemy.

This paper is structured as follows. Apart from
introduction, there are five more sections. Sec-
tion 2 highlights the review of related works. In
Section 3 we discuss about reinforcement learn-
ing techniques in real-time-strategy games and
outline the various learning algorithms used in
reinforcement learning. In Section 4 we out-
line implementation details related to the pro-
posed reinforcement learning algorithms with
the generalized reward function for two real-
time-strategy games (1) BattleCity and (2) S3
game. Section 5 discusses about the experi-
mental result related to our proposed work for
BattleCity and S3. We conclude with Section
6.

2. RELATED WORK

One of the major works usingOnline case-based
planning [3] techniques for Real Time Strat-
egy Games was published in [4]. On-line case-
based planning revises case based planning

for strategic real-time domains involving on-
line planning.

In [5] a case-based planning system called
Darmok2 is introduced that can play RTS

games. They introduced a set of algorithms
that can be used to learn plans, represented as
petri-nets, from one or more human demon-
strations. Another work by the same authors
which uses Darmok2 but addresses the issues
of plan acquisition, on-line plan execution, in-
terleaved planning and execution and on-line
plan adaptation is [6].

In [7] the authors summarize their work in
exploring the use of the first order induc-
tive learning (FOIL) algorithm for learning
rules which can be used to represent oppo-
nent strategies. In [8] the authors improve
Darmok2 using information related to sensors
of the game. We refer to that work as PR-
Model in this paper. PR-model is capable of
learning how to play RTS games by observing
human demonstrations. Using human traces
PR-model makes plans to play games. Pri-
oritize the plan according to the feedback of
the game and feedbacks are decided using some
rule which depends on the sensors of the game.

Drawbacks of all case based learning [9] ap-
proaches as mentioned above are (1) It requires
expert demonstrations for making plans (2) af-
ter training is done, no further learning takes
place (3) to cover large state spaces it would
require large number of rules in the plan base
(4) no exploration for optimal solution. Only
follows human traces.. Stefan Wender [10] uses
Reinforcement Learning for City Site Selection
in the Turn-Based Strategy Game Civilization
IV. Civilization IV is the strategy game it is a
turn-based game while Battle City is Real time
game.

Stefan Wender [10] uses Reinforcement Learn-
ing for City Site Selection in the Turn-Based
Strategy Game Civilization IV. Civilization IV
is the strategy game similar to S3 but it is a
turn-based game while S3 is Real time multi
agent game.

In this paper we aim to do away with
the hard coded simulator and propose a
learning approach based on Reinforcement

Learning [11](RL) wherein sensor information
from the current game-state is used to select

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 63

(a)

(b)

Figure 1. (a)Snapshot of a BattleCity Game (b)Snapshot of an S3 Game

64 Amit Patel and Harshit Sethy

the best action. Reinforcement learning is used
because of its advantages over previous strate-
gies. Specifically (1) RL cuts out the need
to manually specify rules. RL agents learn
simply by playing the game against other hu-
man players or even other RL agents (2) for
large state spaces, RL can be combined with
a function approximator such as a neural net-
work, to approximate the evaluation function
(3) RL agent always explores for optimal solu-
tion to reach the goal (4) RL has been applied
widely to many other fields, such as robotics,
board games ,turn based games and single
agent games with great results, but hardly ever
on RTS multi-agent games.

3. REINFORCEMENT LEARNING

Reinforcement Learning [11] is the field of Ma-
chine Learning which deals with what to do,
how to map situations to actions so as to max-
imize a numerical reward signal.The learner
does not know which actions to take, as in most
forms of machine learning, but instead must
discover which actions gives the most reward
by applying them. In the most interesting and
challenging cases, actions may affect not only
the immediate reward but also the next situa-
tion and, through that, all subsequent rewards.

With comparing reinforcement learning [12] to
RTS game environment an AI player learns by
interacting with the environment and observ-
ing the feed-backs of these interactions. This
is same as the fundamental way in which hu-
mans (and animals) learn. As a human, we
can perform actions and observe the results of
these actions on the environment. The same
way RL-agent interacts with the environment
and observes the result and assign the reward
or penalty to state or state-action pair accord-
ing to the desirability of the resultant state.

3.1. Reinforcement Learning Architec-

ture

RL Architecture has two main characteristics;
one is learning and the other is playing with
the learnt experiences. Initially RLearner has
no Knowledge about the game. So it does ran-

(a)

(b)

Figure 2. (a)Reinforcement Learning (b) Ar-
chitecture for the Reinforcement Learning

dom actions and observe the resultant state us-
ing some sensor information of the game and
give feedback (in the form of reward which is
further used to calculate the Q-Values for the
state-action pairs or Q-Table) of that action to
the previous state according to the desirabil-
ity of the current state. Q-Values of the state-
action pairs are known as Q-Table which define
a policy. After every action policy updates Q-
Values for the state action pairs (Q-Table) this
policy is used to predict the best action while
playing the game. RL agent learns while play-
ing so it again gives feedback and the whole
process it going on till the end of the game.

3.2. Basic components of RL

Reinforcement learning contains five basic
components which are as listed below.

1. a set of environment states S

2. a set of actions A

3. rules of transitioning between states

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 65

4. rules that determine the scalar immedi-
ate reward of a transition (Reward Func-
tions)

5. rules that describe what the agent ob-
serves (Value Functions)

3.2.1. Reward Function

The scalar value which represents the degree to
which a state or action is desirable is known as
reward. This scalar reward is assigned to the
action for the particular transition and the re-
sultant state of the game. If the resultant state
is desirable and safe then positive scalar value
as reward will be assigned to that action oth-
erwise if state is not safe or undesirable then
some negative scalar value as negative reward
will be assigned to that action. We are us-
ing 2 types of Reward function (1) Conditional
Reward function (2) Generalised Reward func-
tion.

3.2.2. Value Function

Value Functions are used for mapping from
states or from state-action pairs to real num-
bers, where the value of a state represents the
long-term reward achieved starting from that
state (or state-action), and executing a partic-
ular policy. It estimates how good a particular
action will be in a given state, or what the re-
turn for that action is expected to be. There
are two type of value functions.

1. V π(s) is the value of a state ’s’ under pol-
icy π. The expected return when starting
in s and following π thereafter.

2. Qπ(s, a) is the value of taking action ’a’
in state ’s’ under a policy π. The ex-
pected return when starting from s tak-
ing the action a and thereafter following
policy π.

There are two methods to define these value
functions:

1. Monte Carlo [11] Method : In this
method the agent would need to wait un-
til the final reward was received before
any state-action pair values can be up-
dated. Once the final reward is received,

the path taken to reach the final state
would need to be traced back and each
value updated.

V (st)← V (st) + α[Rt − V (st)] (1)

where, st is the state visited at time
t, Rt is the reward after time t and α is
a constant parameter.

2. Temporal Difference [11] Method : It is
used to estimate the value functions af-
ter each step. An estimate of the final re-
ward is calculated at each state and the
state-action value updated for every step
of the way. This reflects a more realis-
tic assignment of rewards to actions com-
pared to MC, which updates all actions
at the end directly. TD Learning is noth-
ing but the combination of dynamic pro-
gramming with the Monte Carlo method.
The formula related to TD learning is
given as V (st)

= V (st) + α[rt+1 + γV (st+1)− V (st)](2)

where rt+1 is the observed reward
at time t+1.

3.3. Sensor representation for S3 and

BattleCity Game

We are using two types of sensor information
for assigning reward in battle city game which
are explained as follows;

1. EnemyInline: If enemy position is di-
rectly in line with player without any
block or wall then sensor is represented
by number 2. If there is a wall or block
between enemy and player then sensor is
represented by number 1. If enemy posi-
tion is not in line with player then sensor
is 0.

2. EnemyBaseInline: This sensor informa-
tion is represented in the same way as
above but instead of taking into con-
sideration position of enemy, position of

66 Amit Patel and Harshit Sethy

Figure 3. Snapshot of S3, BattleCity Games and there Current 2D Maps

enemy-base is taken into account. If
enemy-base position is directly in line
with player without any block or wall
then sensor is represented by number
2. If there is a wall or block between
enemy-base and player then sensor is rep-
resented by number 1. If enemy-base po-

sition is not in line with player then sen-
sor is 0.

Sensor information for S3 game

1. Get the current map and store it in a two
dimensional array.

2. Gold and Wood sensors are retrieved

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 67

from current game-state.

3. Number of peasant and footmen entities
for both enemies and player are retrieved
from entities state.

4. Update two dimensional array with static
entities like goldmine position with ’g’,
and buildings with ’b’.

So far we have outlined our method of obtain-
ing sensor information related to two real-time
strategy games, BattleCity and S3.

3.4. Action Selection Policies

We have the following action selections policies
which can be used to select desired action ac-
cording to the behavior of that particular pol-
icy

1. ǫ−greedy : Most of the time the ac-
tion with the highest estimated reward is
chosen, called the greediest action. But,
with a small probability ǫ, an action is
selected at random to ensure optimal ac-
tions are discovered.

2. ǫ−soft : Very similar to ǫ−greedy. The
best action is selected with probability
1 − ǫ and the rest of the time a random
action is chosen uniformly.

3. softmax : One drawback of the above
methods is that they select random ac-
tions with some probability. So there is a
case when the worst possible action is se-
lected as the second best. Softmax reme-
dies this by assigning a rank or weight
to each of the actions, according to their
action-value estimate. So the worst ac-
tions are unlikely to be chosen.

3.5. Steps While Learning

1. The Rlearner observes an input Game
state.

2. The Rlearner then creates a new policy
based on the dimensions of the world.

3. Set the parameters (α, γ, ǫ and number
of episodes) for the Rlearner and start
learning.

4. Start running epochs. You can optionally
run each epoch individually.

One epoch contains following steps.

1. An action is determined by a decision
making function (e.g. ǫ−greedy).

2. The action is performed.

3. The Rlearner receives a scalar reward or
reinforcement from the environment ac-
cording to reward function.

4. Information about the reward given for
that state / action pair is recorded.

5. Update the Q-values in Q-table Ac-
cording to Learning Algorithm(e.g. Q-
learning or SARSA).

4. PROPOSED LEARNING ALGO-

RITHM

In this section we outline our proposed learning
algorithms which we integrated into the two
RTS games Battlecity and S3. We also provide
the implementation details related to selection
of parameters and reward functions.

4.1. Parameters

This section contains the information regard-
ing the reward algorithms and its parameters
which we use for the two game BattleCity and
S3.

• Learning Rate α : The learning rate
0 < α < 1 determines what fraction of
the old estimate will be updated with the
new estimate. α = 0 will stop the RL-
agent from learning anything while α = 1
will completely change the previous val-
ues with the new one.

• Discount Factor γ : The discount fac-
tor 0 < γ < 1 determines what fraction of
the upcoming reward values will be con-
sidered for evaluation. For γ = 0 all the
upcoming rewards are ignored. For γ = 1
means the RL-Agent will consider the
current and upcoming rewards as equal
weightage.

68 Amit Patel and Harshit Sethy

Algorithm 1: calcReward for BattleCity

Input: state :- contains positions of entities, reward, penalty
sensorsList :- contains sensors of game domain.
gameState :- contains state of game is running or not
Output: Reward

P layerx = null, P layery = null, Enemyx = null, Enemyy = null ;
EnemyBasex = null, EnemyBasey = null, winner = null ;
newReward = 0, distance = 0 ;
P layerx = getPositionx(state,player) ;
P layery = getPositiony(state,player) ;
Enemyx = getPositionx(state,enemy) ;
Enemyy = getPositiony(state,enemy) ;
EnemyBasex = getPositionx(state,enemybase) ;
EnemyBasey = getPositiony(state,enemybase) ;
if gameState == "end" then

winner = getWinner() ;
if winner == "player" then

newReward = newReward + reward ;

else

newReward = newReward - penalty ;

else

if sensorList[EnemyInline]==2 then

newReward = newReward - penalty ;

if sensorList[EnemyBaseInline]==2 then

distance = 2

√

(EnemyBasex − P layerx)2 + (EnemyBasey − P layery)2 ;

newReward = newReward + 2× reward - distance ;

newReward = newReward - 4× distance ;

distance = 2

√

(Enemyx − P layerx)2 + (Enemyy − P layery)2 ;

newReward = newReward + 4× distance ;

return newReward ;

• Exploration Rate ǫ : In action selec-
tion policies there is one policy called as
ǫ greedy method which uses the explo-
ration rate 0 < ǫ < 1 for determining
the ratio between the exploration and ex-
ploitation. We are using ǫ greedy method
for selecting the best action and to main-
tain the balance between exploration and
exploitation.

4.2. Reward function for BattleCity

Algorithm 1: Reward function is for calculat-
ing reward after performing action on current
state. According to the result of the action re-
ward or penalty are assigned. In steps 1 to 9 get
the positions (x-y co-ordinates) of the player,

enemy and enemy base on the map. In steps
10 to 16 if game is over and winner is the RL-
Agent (player) then add the reward to the total
reward (newReward) else deduct penalty from
the total reward. In steps 17 to 18 if enemy
is in line with the RL-Agent deduct penalty
from total reward so it always tries not to be
in line with enemy. In steps 19 to 21 if enemy
base is in line with the RL-Agent then calcu-
late the distance between the enemy base and
RL-Agent and deduct from 2 times of reward
and add to total reward. So it pushes the RL-
Agent to come closer to the enemy base. Steps
22 to 24 gives the generalized reward function
which makes the RL-Agent quickly attack the

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 69

Algorithm 2: calcReward for S3

Input: state :- contains positions of entities, reward, penalty
Global access to: sensorsList :- contains sensors of game domain
gameState :- contains state of game is running or not
Output: Reward

P layerg = 0, P layerw = 0, Enemyg = 0, Enemyw = 0 EnemyTroopLength = 0, P layerT roopLength =
0, winner = null newReward = 0 P layerg = player.getGold() ;
P layerw = player.getWood() ;
Enemyg = enemy.getGold() ;
Enemyw = enemy.getWood() ;
EnemyTroopLength = enemyTroop.size() ;
P layerT roopLength = playerTroop.size() ;
if gameState == "end" then

winner = getWinner() if winner == "player" then
newReward = newReward + reward

else
newReward = newReward - penalty

else

if P layerg > Enemyg then
newReward = newReward + reward

else
newReward = newReward - penalty

if P layerw > Enemyw then
newReward = newReward + reward

else
newReward = newReward - penalty

if P layerT roopLength > EnemyTroopLength then
newReward = newReward + 2*reward

else
newReward = newReward - 2*penalty

return newReward

enemy base and prevent attack by the enemy.

4.3. Reward function for S3

Algorithm 2: In step 1 to 6 get the sensors
related to total gold, total wood and size of
troops of the player and enemy. In steps 7 to
11 if game is over and winner is the RL-Agent
(player) then add the reward to the total re-
ward (newReward) else deduct penalty from
the total reward. In steps 12 to 14 and 17
to 18 if gold and wood for player is greater
than enemy than add reward to the total re-
ward otherwise deduct penalty from total re-
ward so it always tries to increase the gold and
wood with compare to enemy. In steps 21 to
22 if Player troop is bigger than the Enemy

troop then add the twice of reward to the to-
tal reward (newReward) else deduct twice of
penalty from the total reward. So it pushes
the RL-Agent to Attack or build the army to
increase the size of troop as compared to the
enemy. In step 25 Return the total reward.

5. EXPERIMENTAL RESULTS

In the previous section we have discussed how
we successfully applied reinforcement learning
in two real-time strategy games called Bat-
tleCity and S3. In this section we outline the
experimental results related to reinforcement
learning in BattleCity and S3.

70 Amit Patel and Harshit Sethy

Figure 4. Map:Bridge-26x18

5.1. BattleCity:

We evaluated the performance of RL-Agent
with the help of various maps (e.g., Bridge-
26x18, Bridge-metal-26x18, Bridges-34x26) as
well as with two types of opponents called AI-
Random and AI-Follower in each map. We ob-
served that the Reinforcement Learning Agent
won more than 90% games when played against
both opponents(AI-Random and AI-Follower)
in simple maps and about 80% to 90% when
played against AI-Random in complex maps
and 60% to 80% when played against AI-
Follower in complex maps. Statistics about the
performance of the SARSA[11], Q-Learning[11]
and Darmok2 in the various maps are rep-
resented below in the form of graphs. We
observed that performance of RL-Agent un-
der SARSA Learning algorithm is better than
other techniques and also RL-agent trained by
SARSA algorithm takes less time to win the
game.

We performed our evaluation for BattleCity
game against two opponents AI-Random and
AI-Follower with three different maps. AI-

Random is the built-in AI which selects ran-
dom action always and AI-Follower is tough
to compete because it always follows the op-
ponent and fires at it. It is clear from the
experimental results that reinforcement learn-
ing agent with the SARSA [11] algorithm per-
forms better than other techniques like Q-
Learning [11] and online case based learning
based on Darmok2 [13]. Statistics related to
performance are given below in the form of
graphs. Statistics are represented using two
types of graphs. One is time (in milliseconds)
taken to win the game versus episodes. X-axis
represents the number of episode and Y-axis
represents the time in milliseconds. The other
is number of games won versus episode. Here
also X-axis represents the number of episodes
and Y-axis represents the total number of
games won till that episode.

5.1.1. Map: Bridge-26x18

This map size is 26x18 (refer Figure 4) so total
state space for this map is total combination
of the x− y co-ordinates of the player and en-
emy which is 262x182. This map has a marble

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 71

Figure 5. Map: Bridge-26x18 Against AI-Follower

wall in between which the tank cannot destroy
by firing. So this is an advantage for the tank
to hide from opponents and attack when oppo-
nents enters their side.

5.1.2. Map: Bridges-34x24

This is the most complex map (refer Figure
11) among all on which we have performed our
evaluation because of its size and the structure.
It is a 34x24 map and it has 342x242 search
spaces. It contains many brick wall and water
bodies. Brick wall can be destroyed by firing.
Its size and water bodies makes it a difficult
and complex map.

In time versus episodes graph (refer Figure 9
and 10) the plot (refer Figure 6 and 5) is show-
ing that time to win the game for all strategies
varies for every episodes. This map has more
water bodies so it is difficult to learn a strategy
to win quickly. Against AI-random the perfor-
mance of all the strategies are close while in
case of AI-follower SARSA performs well and
wins more game in compared to Q-learning and
Darmok2.

5.2. S3

The maps related to S3 are more complex
than that of Battlecity. We evaluated our ap-
proach on various maps against several built-

72 Amit Patel and Harshit Sethy

Figure 6. Map: Bridge-26x18 Against AI-Random

in AI player. In our experiments we built
RL agent for S3 game using relative reward
function with the Q-learning and SARSA ap-
proach as discussed earlier. RL-agent learn
by playing 10 games against built-in-ai called
ai-catapult-rush for the simple map NWTR1
(refer Figure 12) using two approaches Q-
Learning and SARSA. The state-action pair
values (Q-Values) are updated while playing

(or Learning as discussed earlier RL-Agent
also learns while playing). Using this updated
Q-Values RL-Agent plays games against ai-
catapult-rush as well as another type of built-
in-ai called ai-rush.

• ai-catapult-rush is the built-in-ai that
builds barracks and lumber-mills at the
starting, this has two peasants for har-
vesting gold, and two for harvesting

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 73

Figure 7. Map: Bridge-metal-26x18 Against AI-Random

wood. Then it starts building catapults
nonstop and also attacks after a while.
After sometime it increases the number of
peasants to 3, and starts building the sec-
ond barrack. It also looks for goldmines
where there gold is still available. Also,
it sends catapults to attack enemies.

• ai-rush is the built-in-ai that builds a
barrack at the starting. There are two
peasants at the starting for harvesting
gold and wood. After building the bar-
rack ai-rush trains the footmen. When

there are two trained footmen it starts
attacking.

For our experiment we used three type of maps
(refer Figure 3, 1 and 12) according to dif-
ficulty level (easy-NWTR2, medium-NWTR6
and difficult-GOW). We performed our exper-
iments with five games against two built-in-
ai wherein the two approaches are Q-Learning
and SARSA for each map. The comparison
statistics are given in Table 1. We observed
that RL-agent with SARSA wins most of the
games. Q-Learning and the previous approach

74 Amit Patel and Harshit Sethy

Figure 8. Map: Bridge-Metal-26x18 Against AI-Follower

(Darmok2) [13] performs almost the same but
not better than SARSA. For S3 also SARSA
gives the best results. Table 1 shows the re-
sults comparison.

By analyzing the results shown in Table 1 we
can see that in most of the maps SARSA has
won or drawn the game. The maps where it has
lost we found that the built-in-ai was a quick

attacker and RL-agent was not able to produce
enough number of troops to defend while the
enemy was attacking. The RL agent was basi-
cally trying to find a way to enter through the
wall of trees. In some maps we have shown the
results as drawn. This means that resources
like wood and gold of both player and enemy
got finished and only peasants were left out at

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 75

Figure 9. Map: Bridges-34x24 Against AI-Random

both the sides and they cannot do anything
without the gold and wood.

When compared to previous research on
Darmok2 [13], where pre-prepared strategies
are used to play the game and plan adaption
module is used to switch strategies in this re-
search RL-Agent quickly switches the strate-
gies while playing, even though we used a sim-
ple map for training the RL-Agent.

6. CONCLUSIONS

In this paper we proposed a reinforcement
learning model for real-time strategy games.
In order to achieve this end we make use of
two reinforcement learning algorithms SARSA
and Q-Learning. The idea is to get the best
action using one of the RL algorithms so as to
not make use of the traces generated by the
players. In previous works on real-time strat-
egy games using ”on line case based learning”
human traces form an important component in
the learning process. In the proposed method

76 Amit Patel and Harshit Sethy

Figure 10. Map: Bridges-34x24 Against AI-Follower

we are not making use of any previous knowl-
edge like traces and therefore we follow an un-
supervised approach.

This research is with regard to getting the
best action using two algorithms (SARSA and
Q-Learning) which comes under Reinforce-
ment Learning without the traces generated by
the player as proposed in the previous work
”on line case based learning” using Darmok2.
Another major contribution of our work is the
reward function. Rewards are calculated by
two types of reward functions called condi-

tional and generalized reward function. The
sensor information related to game is used for
calculating the rewards. The reward values are
further used by the two RL algorithms SARSA
and Q-Learning.

These algorithms make policies according to
the reward for the state-action pair. RL agent
choose the action using these policies. We eval-
uated our approach successfully in two differ-
ent game domains (BattleCity and S3) and
observed that reinforcement learning performs
better than previous approaches in terms of
learning time and winning ratio. In partic-

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 77

Figure 11. Map:Bridge-Metal-34x24

Figure 12. Snapshot of an S3 Game Map:GOW

ular SARSA algorithm takes lesser time to
learn and start winning very quickly than Q-
Learning and that too for complex maps. Ad-

ditionally, identifying the areas which can com-
bine with our approach to improve the perfor-
mance with vast search space, so that we can

78 Amit Patel and Harshit Sethy

Table 1
Comparison of SARSA and Q-Learning with Darmok2

map Approach Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
against ai-catapult

NWTR2 SARSA won won won won won
NWTR2 Q-Learning lost won won draw won
NWTR2 Darmok2 won draw won won lost
NWTR6 SARSA lost draw won won won
NWTR6 Q-Learning won lost draw lost won
NWTR6 Darmok2 won lost won lost won
GOW SARSA draw lost won draw won
GOW Q-Learning lost lost won lost won
GOW Darmok2 won lost won lost draw

against ai-rush

NWTR2 SARSA won won won won won
NWTR2 Q-Learning won draw won won won
NWTR2 Darmok2 won won won lost won
NWTR6 SARSA won draw won won won
NWTR6 Q-Learning lost lost won won won
NWTR6 Darmok2 won draw won lost won
GOW SARSA draw won won won won
GOW Q-Learning lost won draw won won
GOW Darmok2 won lost won lost won

process search space efficiently and fast to im-
prove the performance of reinforcement learn-
ing.

REFERENCES

1. Marc Ponsen and Pieter Spronck. Improving
Adaptive Game AI with Evolutionary Learn-
ing, in Computer Games: Artificial Intelli-
gence, Design and Education, pages 389-396,
2004.

2. Katie Long Genter. Using First Order Induc-
tive Learning as An Alternative to a Simulator
in a Game Arficial Intelligence, in Georgia In-
stitute of Technology, pages 1-2, May 2009.

3. Janet L, Kolodner. An Introduction to Case-
Based Reasoning, in Artificial Intelligence Re-
view, pages 3-34, 1992.

4. Neha Sugandh, Santiago Ontañón, and Ash-
win Ram. On-line Case-based Plan Adapta-
tion for Real-time Strategy Games. In :Asso-
ciation for the Advancement of Artificial Intel-
ligence(AAAI), pages 1-2, 2008.

5. Santiago Ontañón, K Bonnette, P Mahin-
drakar, M A Gomez Martin, Katie Long
Genter, J.Radhakrishnan, R.Shah, and Ash-
win Ram. Learning from Human Demonstra-

tions for Real-Time Case-Based Planning, in
STRUCK-09 Workshop, colocated with IJCAI,
pages 2-3, 2011.

6. Santi Ontanon, Kinshuk Mishra, Neha
Sugandh, and Ashwin Ram. On-line Case-
Based Planning, in Computational Intelli-
gence, pages 84-119, 2010.

7. Katie Long Genter, Santiago Ontan and
Ashwin Ram. Learning Opponent Strategies
through First Order Induction, in FLAIRS
Conference, pages 1-2, 2011.

8. 13 Pranay M. Game AI:Simulator V s. Learner
in Darmok2. In University of Hyderabad as
MTech Thesis , 2013.

9. P P Gomez Martin, D Llanso, M A Gomez
Martin, Santiago Ontañón, and Ashwin Ram.
Mmpm: A Generic Platform for Case-Based
Planning Research, in ICCBR Workshop on
Case-Based Reasoning for Computer Games,
pages 45-54, July 2010.

10. Stefan Wender and Ian Watson. Using Re-
inforcement Learning for City Site Selection
in the Turn-Based Strategy Game Civilization
IV, in Computational Intelligence and Games
(CIG), pages 372-377, 2008.

11. R S Sutton and A G Barto. Reinforcement

Reinforcement Learning Approach for Real Time Strategy Games Like Battle City and S3 79

Learning: An Introduction, A Book Publisher
MIT Press, 1998.

12. Bhaskara Marthi, Stuart Russell, David
Latham and Carlos Guestrin. Concurrent Hi-
erarchical Reinforcement Learning Turn-Based
Strategy Game Civilization IV. In Interna-
tional Joint Conference on Artificial Intelli-
gence, Edinburgh, Scotland, pages 1652-1653,
2005.

13. Santiago Ontañón Villar. D2 Doc-
umentation. pages 1-6, May 2010,
http://heanet.dl.sourceforge.net/project/dar-
mok2/D2Documentation.pdf.

Harshit Sethy is the Co-
founder and Chief Technology
Officer of Gymtrekker Fitness
Private Limited, Mumbai, India.
He received his Masters degree
in Artificial Intelligence from
University of Hyderabad.

Amit Patel is currently the
Assistant Professor, Rajiv
Gandhi University of Knowl-
edge Technologies, IIIT Nuzvid,
Krishna. He obtained his
Bachelor of Technology from
Uttar Pradesh Technical Univer-
sity. He received his Masters deg

-ree in Artificial Intelligence from University of
Hyderabad, Hyderabad.

