
SVM with Inverse Fringe as feature for Improving

Accuracy of Telugu OCR Systems

Amit Patel*1, Burra Sukumar2, Chakravarthy Bhagvati2

1 Rajiv Gandhi University of Knowledge Technologies, IIIT Nuzvid

Nuzvid, Krishna, 521201, Andhra Pradesh, India
2 School of Computer and Information Sciences, University of Hyderabad,

Hyderabad, 500046, Telangana, India

amtptl93@gmail.com, chakcs@uohyd.ernet.in

Abstract. Designing an OCR system with high accuracy is quite a tough task as

the system performance gets affected by its component modules. The accuracy

and quality of the OCR system depends on impact of each module. The overall

system performance changes if there is an improvement in a module. In our

work at present we have developed an OCR system for Telugu (Drishti

System).We proposed in our paper SVM algorithm with inverse fringe as

feature for Telugu OCR. The idea is to improve the performance of system by

increasing recognition accuracy of the developed system. Support Vector

Machines (SVM) was shown by several researchers to deliver high performance

on Indic OCRs. SVMs have been applied to Telugu OCR and are tested with

different features. In our experiments, we used fringe distance and its

complementary version, the inverse fringe as a feature to the SVM. These two

features have been used to develop the working model of Telugu OCR with an

accuracy approaching 90%. It is shown that the performance is good over more

than 300 classes. With inverse fringe as feature, the system with 325 classes is

trained with 15543 labeled Telugu characters and tested over 75335 unlabeled

Telugu characters; the accuracy of the system is found 99.50%. The SVM based

classifier is tested on our scanned image document corpus of more than 4500

pages and about 5,000,000 symbols. Evaluation of end-end system performance

is done in our experiments. From the results it has been depicted that SVM

classifier is giving an improvement of approximately 1.24% over the developed

Telugu OCR (Drishti System).

Keywords: Fringe map, Telugu script, Telugu OCR, System performance,

Indian scripts.

1 Introduction

Designing an OCR system with high accuracy is a challenging task as the

performance of the system will be affected by its component modules like pre-

processing (binarization, noise removal, skew detection and correction etc.), line,

word and character segmentation, feature extraction, classification, post processing

etc. The overall quality of the system depends on the correctness of each module. If

Errors occur in any of the modules they may propagate through the successive

modules and may turmoil the overall system performance. In order to get a more

robust OCR system [15] there is an urgent need to handle these errors i.e. we need to

handle the errors in any of the modules. By considering an OCR system, being

developed for Telugu as a part of funded project by Govt. of India, in our present.

From different kinds of books a collection of 4500 scanned documents (about

5,000,000 symbols) has been created along with their ground truth. As most of these

documents have been taken from old books so they have got degraded. Other attempts

to Telugu OCR [13] [14] in the literature have neither have reported an end-end

performance evaluation nor they have shown results on such large data [15]. We

observed from the experiments that the performance of the system is less due to

recognition module and even due to improper segmentation. Here we tries to improve

the recognition module by replacing it SVM instead of KNN (K Nearest Neighbor)

classifier which is based on the fringe map feature and uses distance measure [4]. We

trained SVM with inverse fringe distance map as feature. Finally as a result we

obtained a major improvement in the overall accuracy of the end-to-end system.

 Telugu Optical Character Recognizing system (Telugu OCR) [4] is to recognize

Telugu character components by labeling them with appropriate labels. Telugu script

contains large number of component classes set, which is including consonants,

vowels, and combinations of consonant, vowel modifier, combinations of consonants

and few other symbols. If we can separate the vowel and consonant modifier part by

segmenting, all these components may results in lesser number of classes. As there

exists no mechanism to do this perfectly, components to be dealt by the classifier are

resulting in large number of classes. We have adopted connected component strategy

to reduce the possible number of distinct components to be recognized by Telugu

OCR, this resulted in approximately 400 classes.

 An OCR system has mainly consists of two phases in it. First is feature extractor

and second is classifier. Purpose of feature extractor is to develop features for

recognizing classes using available information. Classifier functionality is to classify

the input samples and assign the appropriate labels. In literature there are many

classifiers such as Bayesian Networks, Decision Tree Classifiers, Support Vector

Machines (SVM), and Nearest Neighbor Classifiers. Among these all no classifier

available which is guaranteed to perform well, we choose SVM for our experiments

and tried with different features such as fringe and inverse fringe as feature for the

SVM and found that performance is good over even if we increased the number of

classes more than 300. The performance of inverse fringe distance map (IFDM) as

feature is better than fringe distance map (FDM) as feature.

 The paper is structured as follows. Apart from introduction, there are five

sections in this paper. Section 2 highlights the overview of the Telugu OCR system.

Section 3 is about SVM and SVM library adopted for experiments. In section 4 we

discussed about the feature extraction process and recognition accuracy with that

feature. In section 5 we outlined about the experimental results and compared with the

existing system results. We concluded with section 6.

2 Telugu OCR system

An OCR system is one which consists of several modules like pre-processing

(binarization, noise removal, skew detection etc.), segmentation of line, word and

character, feature extraction, classification, post processing. In the survey paper [8]

author have discussed about different methods for binarization and found adaptive

method shows best performance on our corpus. Based on projection profiles

segmentation of line, word and character are performed [9]. From the experiments

performed on our corpus it is found that classifiers such as Neural Networks, SVM

[12] do not perform well because corpus contains large number of broken

characters/classes with different features [4], [10], [11]. Fringe distance map as a

feature [4] for K-NN classifier is used as it is found that K-NN shown the better

performance than other classifier on our corpus.

3 Support Vector Machine

In the field of pattern recognition Support Vector Machine (SVM) [6] is a statistical

method which has shown great success in many practical approach, such as text

classification, face recognition, handwritten digit recognition etc. By projecting data

into the feature space and then finding the optimal separate hydroplane [1] SVMs can

transform a non-linear separable problem into linear separable problem with the help

of different kernel functions. Initially this kind of method was used to solve two class

classification problems. Few strategies were introduced later to extend this technique

to solve multiple class classification problems. In [2] author has discussed a very good

and comprehensive theory about SVM.

3.1 SVM Library Adopted in the Experiments

OpenCV SVM (LIBSVM) [7] has been used to build the SVM models in our

experiments. OpenCV SVM is quite efficient, simple and easy to use software for the

classification using SVM. For the experiments, The SVM classifier was trained to

make the prediction using probabilities value assigned to each class. By looking the

values of probabilities assigned to each class we can easily apply post processing for

decision making whether to reject or accept the character. Kernel function used is

Radial Basis Function (RBF). SVM type as NU_SVC function is used for training and

prediction. 10-fold cross validation is done while training.

4 Feature Extraction for the SVM Model

To achieve a good performance from an SVM classifier, we used fringe distance map

and inverse fringe distance map as a feature. There are 1024 variables in one feature

vector, computed by fringe. These features are described below.

4.1 Fringe Distance Map

We used fringe distance map [3] as feature for the SVM, to calculate FDM, we took

an image of a character of dimension of 32 x 32, so total number of pixel present in

image is 1024 and we assumed every pixel value as a variable, so one feature vector

contain 1024 variables. This is also assumed that the glyphs are in black color and

background of glyph is of white color. Use L1 metric or city-block distance to

compute the distances [4] (Fig. 1). Efficient computation of the fringe distances can

be done if at each pixel position of the template, the distances of the nearest black

pixel are pre-computed and stored [4].

Fig. 1 Example of Fringe Distance Map: A character of Telugu is taken which is represented in

over the white background; distances of black pixel are calculated by L1 metric or city block

distance.

 We used this calculated value as a feature vector.

"3,2,2,1,1,0,0,0,0,0,0,0,1,1,1,2,3,2,1,1,0,0,0,0,0,0,0,1,2,2,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,1,2,2,2,1,0,0,0,0,0,0,0,0,1,1,2,2

,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,1,0,0,0,0,0,0,0,0,0,1,1,2,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1

,2,2,2,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0

,0,1,2,1,0,0,0,0,0,0,1,2,2,1,0,0,0,0,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,1,2,1,1,0,0,0,0,1,1,0,0,0,0,0,1,2,1,1,0,0

,0,0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,0,0,0,0,1,1,2,2,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,1,2,2,2,1,0

,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,2,2,2,1,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,1,2,2,2

,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,1,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,2,1,0,0,0,0,0,0,1,2

,2,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,2,2,1,0,0,0,0,0,0,1,1,2,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0

,1,1,1,0,0,0,0,1,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,1,1,0,0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2

,2,2,1,1,0,0,0,0,0,1,2,1,1,0,0,0,0,0,1,1,1,2,2,2,3,3,3,3,2,2,2,2,1,1,1,0,0,0,0,0,1,1,2,2,1,0,0,0,0,0,0,0,1,1,1,2,2,3,3,2,2,1,1

,1,1,0,0,0,0,0,0,0,1,2,2,2,1,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,1,1,0,0,0,0,0,0,0,0,0,0,1,2,3,2,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0

,0,0,0,0,0,0,0,0,0,1,1,2,3,2,2,1,1,0,1,2,2,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,3,4,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,0,0,0,0,1,2,2,2,3,3,4,4,4,3,3,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,3,3,3,4,4,5,4,4,3,3,2,2,1,1,1,1,1,0,0,0,0

,0,0,0,0,1,1,1,1,2,2,2,3,4,4,4,5"

4.2 Inverse Fringe Distance Map

We used inverse fringe distance map [3] as feature for the SVM, to calculate IFDM,

we took an image of a character of dimension of 32 x 32, so total number of pixel

present in image is 1024 and we assumed every pixel value as a variable, so one

feature vector contain 1024 variables. This is also assumed that the glyphs are in

white color and background of glyph is of black color. Use L1 metric or city-block

distance to compute the distances [4] (Fig. 2). Efficient computation of the fringe

distances can be done if at each pixel position of the template, the distances of the

nearest black pixel are pre-computed and stored [4].

Fig. 2 Example of Inverse Fringe Distance Map: A character of Telugu is taken which is

represented in over the black background; distances of black pixel are calculated by L1 metric

or city block distance.

 We used this calculated value as a feature vector.

"0,0,0,0,0,1,2,3,4,3,2,1,0,0,0,0,0,0,0,0,1,2,3,4,3,2,1,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,2,1,1,1,0,0,0,0,0,1,1,2,3,4,3,2,1,0,0,0,0

,0,0,0,0,1,1,2,2,2,2,2,2,2,2,1,0,0,0,0,0,1,2,2,3,3,3,2,1,1,0,0,0,0,0,0,1,1,2,2,2,1,1,1,1,2,2,1,0,0,0,0,1,1,2,2,2,2,2,2,2,1,1,0

,0,0,0,0,1,2,2,2,1,1,0,0,1,1,2,1,1,0,0,1,1,2,2,2,1,1,1,1,2,2,1,0,0,0,0,0,1,2,3,2,1,0,0,0,0,1,2,2,1,0,0,1,2,2,2,1,1,0,0,1,2,2,1

,1,0,0,0,1,1,2,3,2,1,0,0,0,0,1,2,2,1,0,0,1,2,2,2,1,0,0,0,1,1,2,2,1,0,0,0,1,2,2,3,2,1,0,0,0,0,1,2,2,1,0,0,1,2,2,1,1,0,0,0,0,1,2

,2,1,1,0,0,1,2,3,3,2,1,0,0,0,1,1,2,2,1,0,0,1,2,2,1,0,0,0,0,0,1,2,2,2,1,0,0,1,2,3,3,2,1,1,0,0,1,2,2,2,1,0,0,1,2,2,1,0,0,0,0,0,1

,1,2,2,1,0,1,1,2,3,3,2,2,1,1,1,1,2,2,2,1,0,0,1,2,2,1,0,0,0,0,0,0,1,2,2,1,0,2,2,2,3,3,3,2,2,2,2,2,2,1,1,1,0,0,1,2,2,1,0,0,0,0,0

,0,1,2,2,1,0,3,3,3,2,2,2,2,2,3,3,2,2,1,0,0,0,0,1,2,2,1,1,0,0,0,0,0,1,2,2,1,1,4,4,3,2,1,1,1,2,2,2,2,1,1,0,0,0,0,1,2,2,2,1,1,0,0

,0,0,1,2,2,1,1,5,4,3,2,1,0,1,1,1,1,1,1,0,0,0,0,0,1,2,3,2,2,1,0,0,0,0,1,2,2,1,0,5,4,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,3,2,1,1

,0,0,0,1,2,2,1,0,4,4,3,2,1,0,0,0,1,1,1,1,1,1,1,1,1,1,2,3,3,2,2,1,1,0,0,1,2,2,1,0,3,3,3,2,1,0,0,0,1,1,2,2,2,2,2,2,2,2,2,3,3,3,2

,2,1,0,0,1,2,2,1,0,2,2,2,2,1,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,0,1,1,2,2,1,0,1,1,2,2,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1

,1,1,0,0,1,2,2,1,1,0,0,1,2,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,1,0,0,0,1,1,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

,0,0,0,0,1,2,2,1,1,0,0,0,0,1,2,2,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,1,0,0,0,0,0,1,2,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0

,0,0,1,1,1,2,2,2,1,0,0,0,0,0,1,1,2,2,2,2,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,1,1,0,0,0,0,0,0,1,1,2,2,2,2,2,1,1,0,0,0,0,0,0,1

,1,2,2,2,2,3,2,2,1,0,0,0,0,0,0,0,0,1,1,2,2,3,2,2,1,1,1,1,1,1,1,1,2,2,3,3,2,2,2,1,1,0,0,0,0,0,0,0,0,0,1,1,2,2,3,2,2,2,2,2,2,2,2

,2,2,3,3,3,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,2,2,2,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,3,4,4

,3,2,2,2,2,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,3,4,4,3,2,1,1,1,1,0,1,2,3,4

,4,3,2,1,0,0,0,0,0,0,0,0,0,0,0,0"

4.3 Experiments with Fringe as feature

We started our experiment with 20 classes, In this process first we took an image of

character and calculated the FDM and stored all the values of pixel as a variable in a

feature vector, so one feature vector consists of 1024 variables. For training we took

445 sample character from different 20 classes and 1132 character for test data and

found the average accuracy of the system is 98.93 percent. The next experiment is

conducted with 45 classes, we trained SVM with 2436 characters and tested 19582

characters and found the recognition accuracy of the SVM is 99.45 percent. The

results are shown in Table 1.

4.4 Experiments with Inverse Fringe as feature

We started the experiment with the 20 classes, trained the SVM with small data-set

and tested the recognition accuracy of the SVM. In this process we did the same as we

did in experiment 4.3. For training we took 445 character samples from different 20

classes and 1132 characters for test data, and found the average accuracy of the

system is 100.00 percent which is better than the SVM in which we used fringe

distance map as a feature. The next experiment is conducted with the 45 different

classes. We trained the SVM with a dataset of 2436 character sample and tested on

large dataset consisting of 19582 and found the recognition accuracy of the SVM is

99.89 percent. The results are shown in Table 1.

4.5 Experimental Results

From the above two experiments we found that using inverse fringe distance map as a

feature gives good result as compared to fringe distance map as a feature. Table 1

shows the comparison between the two SVMs and their recognition accuracy.

Table 1. Comparison of the Results of SVMs with FDM and IFDM as features

No. of

Classes

Classifier’s

Feature

Train Data

Set Size

Test Data

Set Size

Correct

Recognition

Incorrect

Recognition

Accuracy

20 FDM 445 1132 1120 12 98.93

20 IFDM 445 1132 1132 0 100.00

45 FDM 2436 19582 19475 107 99.45

45 IFDM 2436 19582 19562 20 99.89

Table 2 shows the results of all the experiments done by using inverse fringe

distance as feature vector. First we started the experiment with less number of classes

and gradually we increased the number of classes, as we increased the number of

classes the recognition accuracy is decreased by small value but the SVM shows good

performance in handling the large number of classes with IFDM as feature.

Table 2. Results of SVMs using IFDM as feature

No. of

Classes

Training Data

Set Size

Test Data

Set Size

Correct

Recognition

Incorrect

Recognition

Accuracy

20 445 1132 1132 0 100.00

45 2436 19582 19562 20 99.89

75 3862 26246 26208 38 99.85

100 5239 37534 37438 96 99.74

125 7796 44480 44367 113 99.74

175 10900 62306 62059 247 99.60

208 12287 67323 66990 333 99.50

325 15543 75335 74960 375 99.50

5 Experimental Results and Analysis

After integrating the SMV into our developed OCR system [15], we have compared

both the previous OCR system and improved OCR system performances over 27

novels on around 4525 pages in the corpus. Computation of error rate for a given page

can be done by using a traditional string matching algorithm, Levenshtein edit

distance (LED) [5]. We need to convert one string to other for a given two strings by

using LED as it gives minimum number of insertion, deletion and substitution. For a

given page we are taking all the UNICODES of ground truth text into one string and

all UNICODE of OCR output text as another string. The computation of LED can be

done between these strings for a given page. The overall error rate for a given page

can be obtained by the ratio of LED to the number of UNICODES in the ground truth

text. The errors in the text output are ultimately reflected as the errors of any module

of OCR system.

The example shown in Fig. 3 and Fig. 4 is input and output of the previous OCR

system and improved OCR system. In the previous OCR system there are 428 glyphs

can be recognized by KNN as they were present in template, but in improved OCR

system only 325 glyphs can be recognized by using SVM as SVM is trained with only

325 different glyphs. For the given input page, recognition accuracy is increased by

6.88 %. Figure 4 shows the results which incorrectly classified (red box) by previous

system and correctly classified (green box) by improved system.

Fig. 3. Input image for previous and improved OCR system

Fig. 4. Output image for input image in Fig. 3; given to previous and improved OCR system

Table 3 shows the performance of the Previous OCR and Improved OCR system. We

took different pages from different books and evaluated the performance over those

pages; some of the good improvements are shown in Table 3.

Table 3. Performance of Previous and Improved OCR system on some pages.

Page Number Novel Name Err-Rate

Previous

OCR

Err-Rate

Improved

OCR

Performance

Improvement

0320_0293.tifUNIocr OoragaayaNavvindi 46.32 37.87 8.44

0320_0261.tifUNIocr OoragaayaNavvindi 20.59 12.42 8.16

0320_0191.tifUNIocr OoragaayaNavvindi 16.29 9.06 7.22

0320_0079.tifUNIocr OoragaayaNavvindi 14.88 7.96 6.92

0317_0063.tifUNIocr KRKMohankathalu 21.42 14.53 6.88

0317_0118.tifUNIocr KRKMohankathalu 20.69 13.84 6.85

0317_0167.tifUNIocr KRKMohankathalu 16.54 9.82 6.71

0317_0010.tifUNIocr KRKMohankathalu 18.89 12.25 6.63

0011_0005.tifUNIocr RambabuDiarypart1 13.38 5.71 7.67

0011_0122.tifUNIocr RambabuDiarypart1 17.86 12.09 5.76

0011_0075.tifUNIocr RambabuDiarypart1 14.36 9.65 4.70

0011_0042.tifUNIocr RambabuDiarypart1 16.34 11.70 4.63

0120_0103.tifUNIocr GurajadaRachanalu 71.42 50.00 21.42

0120_0079.tifUNIocr GurajadaRachanalu 50.00 38.46 11.53

0120_0167.tifUNIocr GurajadaRachanalu 17.88 10.12 7.75

0120_0032.tifUNIocr GurajadaRachanalu 16.45 10.04 6.41

The table 4 contains the previous OCR error rate and improved OCR error rate and

their differences (performance improvement) on 4525 pages of 27 Novels. The table 4

clearly depicts that the overall performance of the improved OCR system is increased

and improved by 1.22%. For some books the performance is good and for some it is

bad, the reason for this is that the numbers of glyphs present in improved OCR system

are less as improved OCR system contains only 325 glyphs but the previous system

contains 428 glyphs.

Table 4. Results and comparison of Previous and Improved OCR system on different books

Book

Labels

Novel Name Err-Rate

Previous

OCR

Err-Rate

Improved

OCR

Performance

Improvement

0317 KRKMohankathalu 16.01 12.39 3.61

0320 OoragaayaNavvindi 18.06 14.72 3.33

0318 Vaikunthapalli 20.02 16.97 3.05

0001 Aashyapadham 13.04 10.83 2.20

0044 BankimchandraChatterjee 16.19 14.09 2.10

0319 Pillalakathalu 23.24 21.38 1.86

0010 DivamVaipu 7.39 5.61 1.78

0120 GurajadaRachanaluKavithalu 19.39 17.70 1.69

0011 RambabuDiarypart1 12.93 11.36 1.57

0321 GVSNavalalukathalu 21.95 20.42 1.53

0105 Gangajaatara 7.69 6.34 1.35

0045 Chadapurugu 8.36 7.13 1.23

0324 PalnatiViracharithra 8.75 7.55 1.20

0323 Daankwikostsaahasayaatralu 10.44 9.27 1.17

0042 RaniLakshmibai 19.73 18.58 1.15

0322 BalaGayyaluGeyakathalu 12.60 11.56 1.04

0063 Rajasekharacharitra 7.77 6.80 0.97

0103 GurajadaRachanaluKathanikalu 8.01 7.80 0.93

0357 AnnamayyaSankeerthanalu 14.15 13.41 0.74

0013 Jeevansmruthulu 9.79 9.45 0.34

0325 VijayaVilasamu 11.48 11.33 0.15

0015 RambabuDairypart2 14.36 14.23 0.13

0125 Kalaapoornodayamu 9.94 10.07 -0.13

0122 PanduranagaMahatyam 10.20 10.68 -0.48

0127 SrungaraNyshadam 8.19 8.80 -0.61

0136 Vasucharitramu 27.41 28.09 -0.68

0137 SassankaVijayamu 30.24 33.27 -3.03

5 Conclusion

In this paper we proposed the SVM with fringe as feature for Telugu OCR. The idea

is to improve the recognition accuracy of the existing system. The existing OCR

system with Nearest Neighbor algorithm was not giving good performance over some

book as they contain broken characters. Our proposed algorithm with inverse fringe as

a feature gives good results for maximum books available in Dataset. Experiments in

section 4, shows that the performance of SVM is better if we use inverse fringe

distance map as a feature instead of fringe distance map. From the experiments we

found that SVM is also good for handling large number of classes. Then we integrated

our proposed SVM with inverse fringe distance map as a feature to the previous OCR

system and tested over large data-set and found that the system performance is

improved and increased.

References

1. Xiao-Xiao Niu, Ching Y. Suen: A novel hybrid CNN-SVM classifier for recognizing

handwritten digits. Centre for Pattern Recognition and Machine Intelligence, Concordia

University, Suite EV003.403, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, Canada

H3G 1M8

2. S. Abe: Support vector machines for pattern classification. Springer-Verlag, London (2005).

3. R. L. Brown: The Fringe Distance Measure: An Easily Calculated Image Distance Measure

with Recognition Results Comparable to Gaussian Blurring. IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I , JANUARY 1994.

4. Atul Negi, Chakravarthy Bhagvati, B. Krishna: An OCR System for Telugu. IEEE Document

Analysis and Recognition, Sixth International Conference, 2001.

5. P. Pavan Kumar, C. Bhagvati, A. Negi, A. Agarwal, and B. L. Deekshatulu: Towards

improving the accuracy of Telugu OCR systems. 2011 International Conference on

Document Analysis and Recognition, pages 910914, 2011.

6. C. J. Burges: A tutorial on support vector machines for pattern recognition. Data Mining and

Knowledge Discovery, 2(2): 121 – 167, 1998.

7. C. C. Chang and C. J. Lin: LIBSVM: a library for support vector machines. 2001, Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

8. O. Trier and A. K. Jain: Goal-directed evaluation of binarization methods. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 17, no. 12, pp. 1191–1201, 1995.

9. K. Y. Wong, R. G. Casey, and F. M. Wahl: Document analysis system. IBM Journal of Res.

Develop., vol. 26, no. 6, pp. 647–656, 1982.

10. S. Rajasekaran and B. Deekshatulu: Recognition of printed Telugu characters. Computer

Graphics and Image Processing, vol. 6, no. 4, pp. 335–360, 1977.

11. A. K. Pujari, C. D. Naidu, M. S. Rao, and B. C. Jinaga: An intelligent character recognizer

for Telugu scripts using multiresolution analysis and associative memory. Image and Vision

Computing, vol. 22, no. 14, pp. 1221–1227, 2004.

12. V. Govindaraju and S. Srirangaraj: Guide to OCR for Indic Scripts. Advances in Pattern

Recognition, Springer (2010).

13. C. V. Lakshmi and C. Patvardhan: An optical character recognition system for printed

Telugu text. Pattern Analysis and Applications, vol. 7, no. 2, pp. 190–204, 2004.

14. C. V. Lakshmi, R. Jain, and C. Patvardhan: OCR of printed Telugu text with high

recognition accuracies. Computer Vision, Graphics and Image Processing, pp. 786–795,

2006.

15. P. Pavan Kumar, Chakravarthy Bhagvati, Atul Negi, Arun Agarwal, Bulusu Lakshmana

Deekshatulu: Towards Improving the Accuracy of Telugu OCR Systems. ICDAR pp. 910-

914, 2011.

