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Abstract. Multiple Regression is a form of model for prediction purposes. With 

large number of predictor variables, the multiple regression becomes complex. 

It may underfit on higher number of dimension (variables) reduction. Most of 

the regression techniques are either correlation based or principal components 

based.  The correlation based method becomes ineffective if data contains large 

amount of multicollinearity, and principal component approach also becomes 

ineffective if response variables depends on variables with lesser variance. In 

this paper, we propose a Correlation Scaled Principal Component Regression 

(CSPCR) method which constructs orthogonal predictor variables having scaled 

by corresponding correlation with the response variable. That is, the construc-

tion of such predictors is done by multiplying the predictors with corresponding 

correlation with the response variable and then PCR is applied on varying num-

ber of principal components. It allows higher reduction in the number of predic-

tors, compare to other standard methods like Principal Component Regression 

(PCR) and Least Squares Regression (LSR). The computational results show 

that it gives higher coefficient of determination than PCR, and simple correla-

tion based regression (CBR). 

Keywords: Multiple Regression, Principal Components, Correlations, Multi-

collinearity.  

1 Introduction 

Regression analysis is very useful in forecasting and prediction and in the field of 

machine learning as well. It is also used to understand which the predictor variables 

are related to the dependent (response) variable, and to explore the forms of their 

relationships [1]. In some circumstances, It is used to find out causal relationship 

between the independent and dependent variables. Sometimes this can lead to spuri-

ous or false relationships [2], for example, correlation does not imply causation. In 

classical multiple linear regression analysis, problems will occur if the regressors are 

either multicollinear or if the number of regressors is larger than the number of obser-

vations [5]. 

 

The earliest form of regression was of least squares method which was published by 

Legendre in 1805 and by Gauss in 1809. [2]. Gauss published his further work of the 

theory of least squares in 1821, including a technique of the Gauss– Markov theorem. 
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The majority of analyses of multidimensional systems are multiple linear regres-

sion (MLR), principal component regression (PCR), and partial least squares (PLS) 

[5][7][8]. In principal component regression (PCR) [6] the first k principal compo-

nents (PCs) of the predictors X are obtained and used as regressors. The main idea 

behind PCR is to compute the principal components and then use the first few of these 

components as predictors in a linear regression model and fitting is done using the 

classical least squares procedure. If all PCs are used in the regression model, the re-

sponse variable will be predicted with the same accuracy as with the least square ap-

proach. Although PCR can deal with multicollinearity, but it does not directly infer 

the correlation between the predictor variables and the response variable.  

The usual way to construct latent predictors is to obtain the first k principal com-

ponents (PCs) of the predictors’ variables X. This approach is called principal com-

ponent regression (PCR). It is observed in [4] that in some circumstances where re-

sponse variable is depending on the predictor variables with lesser variance, PCR 

gives quite low values of coefficient of determination between the response variable 

and the predictors. 

In this work, a correlation scaled principal component regression (CSPCR) meth-

od is proposed. In this method, first we find the correlation of each predictor variable 

with response variable, then each predictor variable is multiplied by corresponding 

correlation value, then PCR is applied on varying number of principal components, 

this way we construct orthogonal predictor variables having scaled by corresponding 

correlation with the response variable. The scaling of predictor variable neutralizes 

the effect of predictor having high deviation and low correlation. This method allows 

higher reduction in the number of predictors, compared to other standard methods like 

principal component regression (PCR) and least squares regression (LSR). 

A correlation based regression (CBR) is also introduced here. It takes the first k 

predictors in order of non-increasing correlation with response variable. Further the 

predictors are selected in such a way that the absolute correlation difference between 

them is greater than a threshold (say 0.02), which reduces the multicollinearity prob-

lem up to significant extent.  

It is observed that PCR outperforms CBR when the response variable is led by the 

predictor variables with high variance, but when response variable is highly related 

with the predictor with low variance, CBR outperform PCR. The proposed method 

CSPCR outperforms both as it takes neutralized the effect of high variance predictor 

by scaling it by corresponding correlation with the response variable.  

The following sections are organized as follow, section 2 describes background 

and theory and the next two subsections are notation and algorithm for introduced 

method. The section 3 explains simulation and computational result. 
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2 Background and Theory 

2.1 Notations 

A linear regression line has an equation [3] of the form        where X is the 

explanatory variable and Y is the dependent variable. The slope of the line is b, and a 

is the intercept (the value of y when x = 0).  

  
∑      ̅      ̅  

   

∑      ̅  
   

 

Or equivalently,                

And a is obtained as follows 

   ̅    ̅ 

Where,  

    denotes the observed response for experimental unit i  

    denotes the predictor value for experimental unit i  

   ̂ is the predicted response (or fitted value) for experimental unit i 

  ̅ denotes mean of X,  ̅  denotes mean of Y  

The following estimates are considered to evaluate a regression model namely  

    Goodness of fit/Correlation Coefficient (  ):              

Where 

               Regression Sum of Squared Error: 

     ∑  
 ̂
   ̅  

 

   

 

Total Sum of Squared Error:  

     ∑      ̅  
 

   

 

Multivariate regression is an extension of simple linear regression. It is used 

when we want to predict the value of a variable based on the value of one or more 

predictor variables. 

Multiple regression is an extension of Multivariate and Simple linear regression. 

Like multivariate regression, higher degree (>1) polynomials are used in multiple 

regression analysis.  
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To perform principal components (PC) regression, we find eigen vectors and this 

way the independent variables transformed to their principal components. Mathemati-

cally, it is written               where   is a diagonal matrix of the eigenval-

ues of    , where X is centered by subtracting its mean. P is the eigenvector matrix 

of    , and W is a data matrix (similar in structure to  ) made up of the principal 

components. 

Having multicollinearity, two or more of the independent variables are high-

ly correlated, such that one variable can be predicted using another variable. Conse-

quently, rank of     becomes lesser than its full column rank structure. Under such 

situations, some of the eigenvalues of     get very close to 0. This problem can be 

easily sorted out in PCR by excluding the principal components having small eigen-

values. 

 

2.2 Description of algorithm 

The correlation based regression (CBR) method is explained as follows: 

Step-I: Compute correlation of each predictor with response variable. 

Step-II: Sort the predictor variables with respect to non-increasing order of correla-

tion with response variable.  

Step-III: Take first k predictor variables obtained from Step-II and apply multiple 

regression with response variable. In our case k varies from 2 to 10 (that is less equal 

to one-fourth of total number of predictor (=40), taken in computation in this work). 

 

The correlation scaled principal component regression (CSPCR) method is explained 

as follows. 

Step-I: Compute correlation of each predictor with response variable. 

Step-II: Multiply each element in the predictor with the corresponding correlation 

obtained in step-I. 

Step-III:  Apply PCR. Take first k principal component as predictors. In our case k 

varies from 2 to 10 (that is less equal to one-fourth of total number of predictor 

(=40)). 

The computational analysis is explained in section 3. 

3 Simulation and Result 

For simulating the computation, a synthetic datasets   is used; the data set   is gener-

ated with n = 500 samples with m= 40 predictors from specified distributions. 
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The data set   is generated as follows: the first 10 columns values are taken from a 

normally distributed numbers with mean 10 and standard deviation=5, the next 10 

columns values are taken from an exponentially distributed numbers with mean 5. the 

next 10 columns values are taken from an exponentially distributed numbers with 

mean 25.The last 10 columns values are taken from a normally distributed numbers 

with mean 50 and standard deviation = 25. As 10 columns are taken from same distri-

bution it includes significant amount of multicollinearity. The first 20 column variable 

contains lesser variance and later 20 columns. Further to randomness        is 

computed, where the matrix ∆ is random distribution in the range (0, 1).  

 

Furthermore, we generate a response variable as         in two different cases; 

Case-I: The first 20 elements of the vector ‘ ’ are generated from a uniform distribu-

tion in the interval [-1, 1], and the remaining elements of   are 0. 

  

So,   is a linear combination of the first 20 columns of   plus an error term.  

Case-II: The last 20 elements of the vector ‘ ’ are generated from a uniform distribu-

tion in the interval [-1, 1], and the remaining elements of   are 0.  

 

So,   is a linear combination of the last 20 columns of   plus an error term. 

The error term δ is obtained from the distribution N (0, 0.8). 

 

The summary of the centered data set is tabulated in Table-1, where first column val-

ue is average summary of 1
st
 to 10

th
 variables, and second column value is average 

summary of 11th -20th variables and so on. 

Table-1: Summary of the data set  

Var 01:10 10:20 20:30 30:40 

Min. -2.40882 -1.0954 -0.9205 -2.5838 

1st -0.67356 -0.6565 -0.6908 -0.6525 

Median 0.01522 -0.2414 -0.3756 0.0712 

Mean 0 0 0 0 

3rd 0.76428 0.4477 0.2209 0.6592 

Max. 2.02887 4.5123 2.8584 2.3883 

 

 

The coefficient of Determination (R
2
) is used as result of simulation and this 

coefficient is compared over the different methods; namely CSPCR, PCR, and CBR. 

The coefficient of Determination (R
2
) is averaged for m = 100 iterations. The numeri-

cal values of computational results are tabulated in Table.2.  
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Table 2: Computational Result of Coefficient of determination and Error rate 

 #predictors Case-I Case-II 

Method M R^2 ErrorRate R^2 ErrorRate 

CBR 2 0.416 10.348 0.381 44.543 

4 0.514 9.574 0.573 37.526 

6 0.695 7.707 0.591 37.482 

8 0.840 5.407 0.727 31.571 

10 0.888 4.736 0.744 29.996 

PCR 2 0.021 13.782 0.368 44.430 

4 0.043 13.454 0.708 28.515 

6 0.070 13.439 1.000 0.974 

8 0.558 8.785 1.000 0.851 

10 0.857 4.873 1.000 0.765 

CBPCR 2 0.454 10.023 0.618 35.342 

4 0.711 6.984 0.802 25.129 

6 0.866 4.783 0.999 1.021 

8 0.941 3.074 1.000 0.719 

10 0.980 1.770 1.000 0.716 

 
The results depicted in Fig-1 and Fig-2 for Case-I and case-II respectively, show that 

the proposed CSPCR outperforms other standard approaches, and mainly when we 

select very few number of predictor variables. 

 

Case-I: response variable (y) depends on first twenty variables (having lower spread) 

of x with random multiplies in (-1, 1) 

 



7 

Case-II: response variable (y) depends on first twenty variables (having higher 

spread) of x with random multiplies in (-1, 1) 

 

 

 

 
 

Fig 1: Number of predictors Vs. Coefficient of R^2 in Case-I 

 

 

 
 

Fig 2: Number of predictors Vs. Coefficient of R^2 in Case-II 

 

1. Conclusion 

Problems may occur in multiple linear regression if the regressor variables are highly 

correlated or number of predictors are less than number of samples. A simple way to 

get rid of these problems is to apply PCR because it constructs PCs (orthogonal vec-

tor) as regressors. But PCs do not take any information of response variable into ac-
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count. As it is clear from Fig-1, when y depends on regressors with lesser variations, 

PCR underperforms than CBR. 

The proposed method (CSPCR) constructs the regressors which are scaled by cor-

responding correlations with the response variable. The simulation study shows that 

the proposed method allows a significant reduction of the predictor variables com-

pared to PCR and other multiple regression.  
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