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Abstract

In this paper, we present a new idea of two-way quantum communication called ‘secure

quantum information exchange’ (SQIE). If there are two arbitrary unknown quantum states

|ξ 〉IA and |η〉IB , initially with Alice and Bob, respectively, then SQIE protocol leads to the

simultaneous exchange of these states between Alice and Bob with the aid of the special kind

of six-qubit entangled (SSE) state and classical assistance of the third party, Charlie. The term

‘secure’ signifies the fact that SQIE protocol either faithfully exchanges the unknown quantum

states proceeding in a prescribed way or, in case of any irregularity, the process generates no

results. For experimental realization of the SQIE protocol, we have suggested an efficient

scheme for generating SSE states using the interaction between highly detuned �-type

three-level atoms and the optical coherent field. By theoretical calculations, we found that SSE

states of almost unit fidelity with perfect success rates for appreciable mean photon numbers

(Fav � 0.999 for |α|2 � 1.5) can be generated by our scheme. Further, we have discussed

possible experimental imperfections, such as atomic-radiative time, cavity damping time,

atom–cavity interaction time, and the efficiency of discrimination between the coherent field

and the vacuum state shows that our SQIE protocol is within the reach of technology presently

available.

1. Introduction

Quantum entanglement [1] plays an important role in the

quantum information processing tasks such as quantum

teleportation (QT) [2], quantum cryptography [3], quantum

super-dense coding [4], quantum remote state preparation [5]

and many more. Since the no-cloning theorem [6] forbids the

creation of identical copies of an arbitrary unknown quantum

state, to deal with unknown quantum states (inaccessible

information, by measurement we cannot extract complete

information encoded in a quantum state) for using them in

different information processing tasks, sometimes it is required

to map the quantum state from one particle to another particle.

Mapping of the quantum state, |ξ 〉1 = [a0|0〉 + a1|1〉]1, from

one quantum particle 1 to another particle 2 initially in the

state |0〉2 can be performed by applying the C-Not gate [7]

with control as the information particle 1 state,

(a0|0〉 + a1|1〉)1 ⊗ |0〉2
C-Not−−−−−−→ a0|00〉12 + a1|11〉12,

and the subsequent measurement of particle 1 in the diagonal

basis (1/
√

2)[|0〉 ± |1〉]. Also it is possible to map the

information state from an atom to radiation or from radiation

to the atom using atom–field cavity interaction [8]. However,

if we consider two quantum processors working far apart, then

to set a link between these two processors, we need to have

information mapping from the first processor particle to the

second processor particle across space. For this purpose, the

QT scheme, first proposed by Bennett et al [2], is surprisingly

useful as it allows the mapping of quantum information

encoded in an unknown quantum state of a particle to another

particle across space with the aid of quantum entanglement

[1], without physically sending any particle. It is well known

that QT can be used for the construction of quantum gates [9]

using single photons as qubits, and hence is expected to be an

effective tool for the realization of quantum computers and also

proved to be an effective technique for quantum cryptography

[10].

For these reasons, large numbers of schemes have been

proposed for realizing the QT of an unknown information state

encoded in atomic, polarized-photonic, ionic and superposed

coherent states [11–14]. Some authors have experimentally

demonstrated the QT of single-qubit information encoded in
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an atom [12], a polarized photon [13], a nuclear spin [14],

etc. Pati et al [15] studied the problem of the QT of a single-

qubit state using non-maximally entangled states and proposed

probabilistic teleportation. All of these relevant works involve

bipartite Bell-state measurement (BSM) and the transfer of

2-cbit information from the sender (Alice) to the receiver

(Bob). Wang and Pati et al [16] teleported the single-

qubit information state via the tripartite GHZ and W states,

respectively, using tripartite joint measurement. However,

many authors [17] by introducing a third party and using the

GHZ or W state proposed secure quantum communication

known as controlled QT.

Further, many authors in [18, 20] teleported the two-qubit

state of the form

|ξ 〉 = [a00|00〉 + a01|01〉 + a10|10〉 + a11|11〉], (1)

using a 4-particle entangled state and a 4-cbit classical channel.

Rigolin [19] used a 4-particle entangled state of the form

|g〉A1,A2,B1,B2

=
1

2

[

∑

α1,α2=0,1

|α1α2〉 ⊗ σ i1 ⊗ σ i2 |α1α2〉

]

A1,A2,B1,B2

, (2)

where σ i1 , σ i2 ∈ [I, σz, σx, σxσz] and then generalized this

for N-qubit teleportation using the 2N-particle entangled state.

However, it has been shown by Deng [19] that the state in (2)

is the product of two EPR pairs, not a genuine multipartite

entangled state; hence, this protocol in principle is equivalent

to the protocol previously proposed by Yang and Guo [20].

All of these relevant works enable the one-way QT of

the single-qubit or multi-qubit unknown state. However, for

practical realization of a secure quantum network consisting

of many quantum processors working far apart, there may

be some situations when the simultaneous QT of information

states from Alice to Bob, and at the same time from Bob

to Alice, is required. However, one can say that this is

possible simply by switching on two independent QT setups

both in opposite directions, one from Alice to Bob and the

other from Bob to Alice. Since standard QT schemes [2]

need classical information about the BSM results from the

sender to the receiver to be sent, a situation may arise when

Alice’s state gets teleported to Bob, but Bob denies to send

the classical information to Alice. Hence Bob’s state does

not teleport to Alice, which gives rise to an insecure or

dishonest quantum network. However, two-way QT proposed

by Vaidman [2], that involves two nonlocal measurements,

is capable of exchanging quantum states between Alice and

Bob. But since it requires the transmission of measurement

results from Alice to Bob and from Bob to Alice, it gives

rise to an insecure quantum network whenever Alice or Bob

denies sending measurement results. Moreover, two nonlocal

measurements will require two EPR pairs and four local

measurements, while we shall see that our protocol using the

six-particle entangled state defined later in section 2, give

secure quantum information exchange (SQIE) and involves

only two local BSM. Also one cannot use two controlled QT

setups in the opposite direction to exchange quantum states

securely via the GHZ or W state because this would also

require the transmission of classical information from Alice

to Bob and from Bob to Alice, which will again give rise to

an insecure quantum network. We shall see that this problem

will not arise in our scheme. To overcome such a problem, in

the light of the above discussion, we need to have a scheme

with the qualities that (a) it can simultaneously teleport Alice’s

information to Bob and Bob’s information to Alice, (b) security

that the scheme either exchanges the unknown quantum states

or, in case of any irregularity, it generates no results, i.e.,

neither Alice or Bob receives any information, and (c) it

must be experimentally realizable with presently available

technology. We call such two-way quantum communication

the ‘secure quantum information exchange’ protocol. In the

present contribution, we will propose an efficient scheme to

realize SQIE, which is expected to fulfil all these requirements.

We organize the paper as follows: in section 2, we define

a set of special kinds of six-qubit entangled (SSE) states

and show how to implement them for SQIE. In section 3,

we present an experimental scheme for generating SSE

states using the interaction between �-type three-level atoms

and the optical coherent field. In section 4, we discuss

the experimental aspects of our protocol, and finally we

summarize our results with a conclusion in section 5.

2. Secure quantum information exchange

Let us consider that Alice wants to send the information state

in mode A,|ξ 〉IA = [a0 |0〉 + a1 |1〉]A, to Bob and Bob wants to

send the information state in mode B, |η〉IB = [b0 |0〉+b1|1〉]B ,

to Alice, with the security that either both get their required

information state or, in case of any discrepancy, both do not

get the required information state. For this, we define a set of

SSE states as

|ψ〉E =
1

2

[

∑4

i=1
|B〉(i) ⊗ |B〉(i) ⊗ |φ〉(i)

]

(3)

where |B〉(1,2) = 1√
2
[|00〉 ± |11〉], |B〉(3,4) = 1√

2
[|01〉 ±

|10〉] are the standard bipartite Bell states and |φ〉(i) ∈
{|00〉, |01〉, |10〉, |11〉}. If we put an additional condition that

all four |φ〉(i)(i = 1, 2, 3, 4) are different, the states defined by

equation (3) give a set of 24 SSE states.

Using one of these states,

|ψ〉EA1,B1,A2,B2,C1,C2
= 1

2
[|B〉(1) ⊗ |B〉(1) ⊗ |00〉

+ |B〉(2) ⊗ |B〉(2) ⊗ |11〉
+ |B〉(3) ⊗ |B〉(3) ⊗ |01〉
+ |B〉(4) ⊗ |B〉(4) ⊗ |10〉]A1,B1,A2,B2,C1,C2

, (4)

the initial state of the composite system can be written as

|ψ〉A,A1,B1,A2,B2,C1,C2,B = |ξ 〉IA ⊗ |ψ〉EA1,B1,A2,B2,C1,C2
⊗ |η〉IB

= 1
2

[

|ξ 〉IA ⊗ |B〉(1)
A1,B1

⊗ |B〉(1)
A2,B2

⊗ |00〉C1,C2
⊗ |η〉IB

+ |ξ 〉IA ⊗ |B〉(2)
A1,B1

⊗ |B〉(2)
A2,B2

⊗ |11〉C1,C2
⊗ |η〉IB

+ |ξ 〉IA ⊗ |B〉(3)
A1,B1

⊗ |B〉(3)
A2,B2

⊗ |01〉C1,C2
⊗ |η〉IB

+ |ξ 〉IA ⊗ |B〉(4)
A1,B1

⊗ |B〉(4)
A2,B2

⊗ |10〉C1,C2
⊗ |η〉IB

]

, (5)

where the subscripts A1, A2 refer to entangled modes with

Alice, B1, B2 refer to entangled modes with Bob and C1, C2

2
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Figure 1. Scheme for SQIE. A, B are information modes with Alice
and Bob, respectively. |ψ〉E

A1,B1,A2,B2,C1,C2
is a SSE state. The

entangled modes (A1, A2), (B1, B2) and (C1, C2) are with Alice, Bob
and Charlie, respectively. BSM boxes refer to bipartite Bell-state
measurement by Alice and Bob, while the box with state |0〉 or |1〉
refers to the measurement in the basis {|0〉, |1〉}. The logical unit
processes the measurement results of Alice, Bob and Charlie for
deciding the 2-cbit results to be conveyed to Alice and Bob. UA and
UB refer to the unitary operations to be performed by Alice and
Bob, respectively, to complete faithful SQIE.

refer to entangled modes with Charlie. The superscripts E and I

refer to the entangled state and information states, respectively.

Our complete scheme for SQIE is shown in figure 1.

Writing states in modes A, A1 and B2, B in the standard

bipartite Bell basis |B〉(j)

A,A1
and|B〉(k)

B2,B
, respectively, equation

(5) further simplifies to

|ψ〉A,A1,B1,A2,B2,C1,C2,B =
1

4

[

4
∑

i,j,k=1

(

|B〉(j)

A,A1
⊗ U

†
ij |ξ 〉IB1

⊗ U
†
ik|η〉IA2

⊗ |B〉(k)
B2,B

⊗ |ϕ〉(i)C1,C2

)

. (6)

where U1j = U1k = (I, σz, σx, σzσx), U2j = U2k =
(σz, I, σzσx, σx), U3j = U3k = (σx,−σzσx, I,−σz) and

U4j = U4k = (−σzσx, σx,−σz, I ).

Now both Alice and Bob perform BSM on their qubits

A, A1 and B2, B, respectively, while Charlie measures his

qubits C1, C2 in the basis {|0〉, |1〉}. Both convey their BSM

results to Charlie through 2-bit classical channels. Charlie on

the basis of BSM results obtained by Alice and Bob and his

measurement results decides the 2-bit classical information to

be conveyed to Alice and Bob. On the basis of this classical

information, conveyed by Charlie, Alice and Bob perform the

required unitary transformation on their particles in order to

generate exact replicas of corresponding quantum information

states. In table 1, we tabulate all measurement results in

terms of 2-cbit obtained by Alice, Bob, Charlie and 2-cbit that

Charlie conveys to Alice and Bob to complete the process of

quantum information exchange.

From equation (6) and table 1, it is clear that the

unitary transformations required by Alice and Bob to exchange

information states faithfully are completely dependent on

Charlie’s measurement result (classical information to be

conveyed by Charlie to Alice and Bob, for each combination

of Alice and Bob’s BSM result, is different for each of

Charlie’s measurement results); therefore, Alice and Bob

cannot exchange their information states without the assistance

of Charlie. Also if either Alice or Bob, for some reason, denies

to convey the BSM result, then Charlie disregards the complete

Table 1. Classical information conveyed by Charlie to ‘Alice and
Bob’ depending upon his own measurement result and results
conveyed by ‘Alice and Bob’. Alice and Bob perform unitary
operations I, σz, σx, σxσz depending on the classical information 00,
01, 10, 11, respectively, conveyed by Charlie.

2-cbit
information
about BSM
conveyed
by Alice

and Bob to
Charlie

Charlie’s decision about the 2-cbit information to be
conveyed to Alice and Bob for completing the QIE

protocol

Charlie’s measurement result

|00〉 |11〉 |01〉 |10〉
Alice Bob Alice Bob Alice Bob Alice Bob Alice Bob

00 00 00 00 01 01 10 10 11 11
00 01 01 00 00 01 11 10 10 11
00 10 10 00 11 01 00 10 01 11
00 11 11 00 10 01 01 10 00 11
01 00 00 01 01 00 10 11 11 10
01 01 01 01 00 00 11 11 10 10
01 10 10 01 11 00 00 11 01 10
01 11 11 01 10 00 01 11 00 10
10 00 00 10 01 11 10 00 11 01
10 01 01 10 00 11 11 00 10 01
10 10 10 10 11 11 00 00 01 01
10 11 11 10 10 11 01 00 00 01
11 00 00 11 01 10 10 01 11 00
11 01 01 11 00 10 11 01 10 00
11 10 10 11 11 10 00 01 01 00
11 11 11 11 10 10 01 01 00 00

protocol without sending any information to Alice and Bob.

That is why we call this the ‘secure quantum information

exchange’ protocol.

3. Generation of the SSE state

The next natural question is to generate SSE states (equation

(3)) that are used as a quantum channel in our SQIE protocol.

In this section, we present an efficient scheme for the

generation of the SSE state (3). We consider the interaction of

a �-type three-level atom with the optical coherent field. The

level configuration of the atom is shown in figure 2, where

|0〉 and |1〉 are two degenerate ground levels and |2〉 is the

excited level. The frequency of the optical coherent field (ωc)

is largely detuned from the atomic transition frequency ω0, i.e.

� = ω0 − ωc is large. In a large detuning limit, the excited

state |2〉 can be adiabatically eliminated during the interaction

and the effective Hamiltonian can be expressed as [21]

H = −λa†a[|0〉〈0| + |0〉〈1| + |1〉〈0| + |1〉〈1|], (7)

where λ = g2/�. Here we have assumed that coupling

strengths between the cavity mode and atomic transition

(|0〉 → |2〉; |1〉 → |2〉) are equal and are described by the

coupling constant g, governed by the above Hamiltonian; the

state of the system initially in the state |0, α〉 or |1, α〉 evolves

in the following way:

|0, α〉 U(t)−−−→ 1
2
[|0〉(|α〉 + |α e2iλt 〉) − |1〉(|α〉 − |α e2iλt 〉)],

|1, α〉 U(t)−−−→ 1
2
[|1〉(|α〉 + |α e2iλt 〉) − |0〉(|α〉 − |α e2iλt 〉)]. (8)

3
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Figure 2. Scheme for the generation of SSE states (see
equations (3) and (4)). The inset shows the level configuration of the
three-level atom, where |0〉 and |1〉 are two degenerate ground levels
and |2〉 is the excited level. C1, C2 and C3 refer to the cavities
initially prepared in the optical coherent fields |α〉C1

, |−α〉C2
and

|−α〉C3
, respectively. Encircled numbers 1, 2, . . . , 6 denote atom 1,

atom 2, . . . . , atom 6, respectively. Atoms 1, 2 and 3 are initially in
the ground state |000〉A1,A2,A3

, while atoms 4, 5, 6 are initially
prepared in the GHZ state (∼ [|000〉 + |111〉]A4,A5,A6

). t = π/2λ is
the interaction time of the atom with cavity field. H refers to the
Hadamard operation. For more details see the text.

If we select the atomic velocity such that the interaction time

satisfies t = π/2λ, then

|0, α〉 λt=π/2−−−−→ 1
2
[|0, +〉 − |1,−〉];

|1, α〉 λt=π/2−−−−→ 1
2
[|1, +〉 − |0,−〉],

(9)

where |±〉 = [|α〉 ± |−α〉]. Similarly if the system is initially

in the state |0,−α〉 or |1,−α〉 and satisfies the interaction time

t = π/2λ, the state of the system evolves to

|0,−α〉 λt=π/2−−−−→ 1
2
[|0, +〉 + |1,−〉];

|1,−α〉 λt=π/2−−−−→ 1
2
[|1, +〉 + |0,−〉].

(10)

From relations (9) and (10), we obtain

|0, +〉 → |0, +〉, |1, +〉 → |1, +〉,
|0,−〉 → −|1,−〉, |1,−〉 → −|0,−〉, (11)

|A+,±α〉 → |A+,∓α〉, |A−,±α〉 → |A−,±α〉, (12)

where |A±〉 = (|0〉 ± |1〉)/
√

2.

Our detailed scheme for generating the SSE state is shown

in figure 2. Let us prepare cavities C1, C2 and C3 in the optical

coherent field states |α〉C1
, |−α〉C2

and |−α〉C3
, respectively,

and three atoms in modes A1, A2 and A3 in the states |0〉A1
,

|0〉A2
and |0〉A3

, respectively. The initial state of the atom–

cavity system is

|ψ(0)〉A1,A2,A3,C1,C2,C3
= |000〉A1,A2,A3

⊗ |α,−α,−α〉C1,C2,C3
.

(13)

After the first atom A1 has interacted with the coherent field in

cavity C1 for the interaction time t = π/2λ, atoms A2 and A3

are sent one by one through cavity C1. If the interaction time

still satisfies t = π/2λ for both atoms A2 and A3, the state

of the system evolves according to the evolution in equations

(9)–(11), giving

|ψ(3π/2λ)〉A1,A2,A3,C1,C2,C3

= 1
2
[|000+〉 − |111−〉]A1,A2,A3,C1

⊗ |−α,−α〉C2,C3
. (14)

Now we will complete the rotational operation (Hadamard

operation) R = 1√
2

(

1
1

1
−1

)

, with |0〉 =
(

1
0

)

and |1〉 =
(

0
1

)

, on

each atom A1, A2 and A3 to obtain

|ψ〉A1,A2,A3,C1,C2,C3
= 1

2
[|A+A+A+, +〉

− |A−A−A−,−〉]A1,A2,A3,C1
⊗ |−α,−α〉C2,C3

. (15)

On sending atoms A1 and A3 through cavities C2 and C3,

respectively, for the interaction time t = π/2λ, the state of

the system evolves according to evolutions in equation (12),

giving

|ψ〉A1,A2,A3,C1,C2,C3
= 1

2
[|A+A+A+, +, α, α〉

−|A−A−A−,−,−α,−α〉]A1,A2,A3,C1,C2,C3
. (16)

Now again we will complete the rotational operation R on each

atom A1, A2 and A3, which gives

|ψ〉A1,A2,A3,C1,C2,C3
= 1

2
[|000, +, α, α〉

−|111,−,−α,−α〉]A1,A2,A3,C1,C2,C3
. (17)

From equation (14), we see that the GHZ state
(

1√
2
[|000〉 ± |111〉]

)

can be generated simply by performing

measurement on the cavity field in the basis |α〉 and |−α〉.
However, the coherent states |α〉 and |−α〉 are not orthogonal,

〈α | −α〉 = e−2|α|2 , but become orthogonal for large |α|2,

i.e. for a large mean photon number. To distinguish |α〉
and |−α〉, we inject |α〉 into the cavity, i.e. we make use

of the displacement operator D(β) |α〉 = |α + β〉. This gives

|α〉 (Dα)−−−−→ |2α〉 and |−α〉 (Dα)−−−−→ |v〉, where v corresponds to

vacuum. Thus, for large |α|2, the state |2α〉 has a very small

probability of having zero photon and hence gives the non-

zero number of photons on photon counting, while the state

|v〉 gives zero count. In this way, we can generate the GHZ

state, 1√
2
[|000〉 + |111〉], with another setup. We will use this

GHZ state as an ancillary state in modes A4, A5, A6. Now

a complete state of the system is the product of the state in

equation (17) and the GHZ state,

|ψ〉A1,A2,A3,C1,C2,C3,A4,A5,A6

= |ψ〉A1,A2,A3,C1,C2,C3
|GHZ〉A4,A5,A6

=
1

2
√

2
[|00, α〉|00, α〉|00, +〉

+|01, α〉|01, α〉|01, +〉 − |10,−α〉|10,−α〉|10,−〉
−|11,−α〉|11,−α〉|11,−〉]A1,A4,C2,A3,A6,C3,A2,A5,C1

. (18)

We now let atoms A1 and A3 fly through cavities C2 and C3,

respectively, for time t = π/2λ and then let atoms A4 and A6

fly through cavities C2 and C3, respectively, for time t = π/2λ.

By doing this the state in modes A1, A4, C2 evolves according

to equations (9)–(11), giving

|00, α〉A1,A4,C2
→

1
√

2
[|B〉(1)|α〉 + |B〉(2)|−α〉]A1,A4,C2

,

|01, α〉A1,A4,C2
→

1
√

2
[|B〉(3)|α〉 + |B〉(4)|−α〉]A1,A4,C2

,

4
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|10,−α〉A1,A4,C2
→

1
√

2
[|B〉(3)|−α〉 − |B〉(4)|α〉]A1,A4,C2

,

|11,−α〉A1,A4,C2
→

1
√

2
[|B〉(1)|−α〉 − |B〉(2)|α〉]A1,A4,C2

.

(19)

Using equation (19) for modes A1, A4, C2 and similar results

for modes A3, A6, C3 in equation (18), and then applying σz

operation in mode A2, the final output state is written as

|ψ〉A1,A4,A3,A6,A2,A5,C1,C2,C3
=

1

2
√

2
[|λI 〉|α, α, α〉

+ |λII〉|α, α,−α〉 + |λIII〉|α,−α, α〉
+ |λIV〉|α,−α,−α〉 + |λV 〉|−α, α, α〉
+ |λVI〉|−α, α,−α〉 + |λVII〉|−α,−α, α〉
+ |λVIII〉|−α,−α,−α〉]A1,A4,A3,A6,A2,A5,C1,C2,C3

, (20)

where the first and second ket in each component on the RHS

of equation (20) represent atomic states ordered in modes A1,

A4, A3, A6, A2, A5 and cavity states ordered in modes C1,

C2, C3. States |λi〉 (i = I, II, . . . , VIII) are orthonormalized

six-qubit entangled states given in appendix A. From this

appendix, it is clear that the entangled state |λI 〉 is exactly

the same as the particular SSE state used in section 2 for the

SQIE protocol and all states are inter-convertible to each other

just by applying local bit flip operation (σx) and phase flip

operation (σz). So it is enough to generate any state |λi〉. For

this, we now inject the coherent state |α〉 in each cavity C1, C2,

C3, i.e. we again make use of the displacement operator D(α);

doing so, the final output state in equation (20) becomes

|ψ〉A1,A4,A3,A6,A2,A5,C1,C2,C3
=

1

2
√

2
[|λI 〉|2α, 2α, 2α〉

+ |λII〉|2α, 2α, v〉 + |λIII〉|2α, v, 2α〉
+ |λIV〉|2α, v, v〉 + |λV 〉|v, 2α, 2α〉
+ |λVI〉|v, 2α, v〉 + |λVII〉|v, v, 2α〉
+ |λVIII〉|v, v, v〉]A1,A4,A3,A6,A2,A5,C1,C2,C3

. (21)

Since |2α〉 has a non-zero probability of having the vacuum

state |v〉, for a clearer analysis, we expand the coherent state

|2α〉 into vacuum |v〉 and the state with non-zero numbers of

photon |Nz〉,

|2α〉 = x |v〉 +
√

1 − x2 |Nz〉 , (22)

where x = e−2|α|2 . Using equation (22) for |2α〉 in equation

(21), the final output state simplifies to

|ψ〉A1,A4,A3,A6,A2,A5,C1,C2,C3
= 1

2
√

2

[

N−1
I |λ′

I 〉|Nz,Nz,Nz〉

+ N−1
II |λ′

II〉|Nz,Nz, v〉 + N−1
III |λ′

III〉|Nz, v,Nz〉
+ N−1

IV |λ′
IV〉|Nz, v, v〉 + N−1

V |λ′
V 〉|v,Nz,Nz〉

+ N−1
VI |λ′

VI〉|v,Nz, v〉 + N−1
VII |λ′

VII〉|v, v,Nz〉
+ N−1

VIII |λ′
VIII〉|v, v, v〉

]

A1,A4,A3,A6,A2,A5,C1,C2,C3
, (23)

where the normalized states |λ′
i〉 and factors Ni (i = I, II, . . . ,

VIII) are given in appendix B. Now we perform photon-

counting measurement (PCM) in cavity modes C1, C2, C3.

From equation (23), it is clear that there are eight possible

PCM results: I (all modes give nonzero count), II (modes C1

and C2 give nonzero count and rest vacuum), III (modes C1 and
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Figure 3. The variation of the fidelities of the generated state with
respect to the required SSE state for each PCM result and the
average fidelity with respect to the mean number of photons.

C3 give nonzero count and rest vacuum), IV (mode C1 gives

nonzero count and rest vacuum), V (modes C2 and C3 give

nonzero count and rest vacuum), VI (mode C2 gives nonzero

count and rest vacuum), VII (mode C3 gives nonzero count and

rest vacuum), VIII (all modes give vacuum). It is clear from

equation (23) that the ith PCM result (i = I, . . . ,VIII) gives the

state |λ′
i〉. From appendix B, we see that for i = I, the state |λ′

I 〉
is the same as the required state |λI 〉 (defined in appendix A

and used for the SQIE protocol in section 2), while for i =
II, . . . ,VIII, the generated state |λ′

i〉 is the superposition of the

required state |λi〉 and the garbage state, e.g., for II, the PCM

result generated state is |λ′
II〉 = NII[(1−x2)(x |λI 〉+ |λII〉)], so

the (1 − x2)x |λI 〉 part is the garbage state, while the required

state is |λII〉. It is to be noted that for the appreciable mean

photon number, |α|2 ≫ 0, x ≪ 1; therefore, a major part in

|λ′
II〉 is of |λII〉.

To estimate the quality of the generated state, we calculate

the fidelity of
∣

∣λ′
II

〉

with respect to the required state |λII〉,
which is defined as Fi = |〈λ′

i |λi〉|2, where |λi〉 is the

required state, while |λ′
i〉 is actually the generated state. This

gives FII = N2
II(1 − x2)2 = (1 + x2)−1. Similarly for all

PCM results, FI = 1, FII = FIII = FV = (1 + x2)−1,

FIV = FVI = FVII = (1 + x2)−2 and FVIII = (1 + x2)−3.

Figure 3 shows the variation of all these fidelities with respect

to the mean number photon (|α|2), from where we see that

FI is always unity, while FII,...,VIII become almost equal to

unity for an appreciable mean number of photons, e.g., FII �

0.999 for |α|2 � 1.5 and similar results for others. Hence all

PCM results are expected to give the SSE state of high fidelity

(almost perfect) for the appreciable mean number of photons.

To estimate the overall quality of our scheme, we now calculate

average fidelity defined as the summation of the products of

the probability of occurrence and fidelity of the generated state

for each PCM result. In our case, it is Fav =
∑VIII

i=I PiFi , where

Pi = (1/8) |Ni |−2 and Fi are the probability of occurrence and

corresponding fidelity of the generated state, respectively, for

the ith PCM result. The average fidelity Fav = (1/8)(2 − x2)3

is shown in figure 3, from which it is clear that the average

fidelity of the generated states with respect to the SSE state is

almost unity, i.e. Fav � 0.999 for |α|2 � 1.5.
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