

Working Stress versus Limit State Method-A Gistical View for Designing of RCC Structures

Manoj Kumar Varshaney (FISCE, FIWRS, FIPHE, FAE, FIIBE, MCEGR, MISTE, MISCA, MISRS, MIE) Sr. Lecturer/ H.O.D. Civil Engineering, D.N.Polytechnic, Meerut (U.P.)-250103 *Corresponding Author Email Id: manojvarshaney17@rediffmail.com

ABSTRACT

The title of this technical paper deals and demonstrates the pros and cons of WSM versus LSM and highlights the revised code of design of RCC structures as LSM. LSM is better and revised method over working stress and LSM is in vogue. Though in LSM permissible stresses are more than WSM & designed load is multiplied with factor 1.5, even the size of section remains small and steel remains more, even than the cost remains less than WSM. The differentiation must be known by elite readers for getting known the changing procedure of design of RCC structures using both methods.

Keywords: Working Stress, Limit State Method, RCC Structures.

INTRODUCTION

While designing RCC structures like beam, slab, column, portal frame, retaining wall, dam, chimneys, over-head water tanks, bunkers, stair-case and silos etc., it has been observed that out of three methods of designing only two methods are popular and in vogue.

In existing scenario or a decade back only, limit state method has been emphasized and put into the syllabus of civil engineering whether it is in diploma or degree. The past method working stress, was full of easy conceptual basis and mend for mild steel having grade Fe-250, where the hooks are provided at ends of bar, so that the bond between the cement concrete and steel surface could be perfect and no slip could be possible and load of tensile be transferred on steel and compression on concrete, as concrete is better in compression while steel is in tension alike in compression. The steel is now used as HYSD bars or TOR steel bars and have more yield strength like Fe-415, Fe-500, and Fe-550, whose surface has corrugations and due to this the concrete makes better bond with steel surface. By this reason the bars have bends at ends rather than hooks.

Also the grade of cement concrete has been increased from M-15 to M-20, M-25 and M-30 for general and specified works. Similarly the design procedure has been modified and treated as limit state method.

The below paragraph/sub title, demonstrates the actual differentiation in theoretical aspect, materials grade, permissible strength, changing designing concept, checking concept and respective formulas *etc*.

DIFFERNTIAL ASPECT

Since the method of limit state has been in prevailing and commonly in use, hence pros over working stress are being emphasized below in two segments *viz*. first part as working stress

and limit state as second part.

Working stress method is based on theoretical aspect and has easy calculation.

WORKING STRESS	LIMIT STATE
(1) Some assumptions are followed up for	(1)Some assumptions are followed up for
making simple calculation.	making up simple calculation.
(2) Permissible stress of concrete in bending	(2) Permissible stress in concrete
is taken fck/3, here fck=characteristic	= 0.446 fck
strength of concrete like M-15,M-20,M-	For M10,15,20,25,30,35 and 40
25,M-30,M-35 & M-40 respectively has	Stress in concrete =4.46, 6.69, 8.92, 11.15,
fck 15,20,25,30,35 & 40 N/square mm. So	13.38, 15.61 and 17.84 N/sq mm
permissible stress of concrete in bending	respectively.
respectively becomes 5, 7, 8.5, 10, 11.5	
and 13.	
(3) Permissible stress of steel in tension is	(3) Permissible stress in steel =0.87fy
taken fy/1.78, here fy=yield strength of	For Fe-250,350,415,500 & 550,
steel, where fy is 250 N/sq. mm, stands	the respective permissible stress $= 217.5$,
Fe-250 grade steel. So permissible stress	304.5, 361, 435 & 478.5 N/ sq.mm.
of steel for fy-250 is 140 N/sq.mm.	
For Fe-350/415/500/550 the values may	
be 190/230/275/300 N per sq.mm.	
(4) Permissible direct stress of concrete in	(4) Permissible direct stress of concrete in
compression is taken fck/4, where for fck	compression = 0.4 fck.
values 15, 20, 25, 30, 35 & 40, direct	For M10,15,20,25,30,35 & 40 ,respective
stress respectively taken 2.5,4,5,6,8,9 &	stress will be 4,6,8,10,12,14 & 16 N/sq.mm.
10 N per sq. mm.	
(5) Permissible stress of steel in compression	(5) Permissible stress of steel in
fsc ,is taken 130,130,190 & 190 N per	$\frac{1}{10000000000000000000000000000000000$
sq.mm, respectively for Fe-250,350,415 &	For Fe250, 350, 415,500 & 550, the
500 grade steel.	respective permissible stress of steel in
500 grade steel.	compression =167.5, 234.5, 278, 335 &
	368.5 N/ sq. mm.
(5A) Modular ratio m is taken Es/Ec=modulus	(5A) No modular ratio m is taken into
of elasticity for steel/modulus of elasticity	account.
for concrete	
Or	
280/3 multiplied by permissible stress of	
concrete in bending.	
Hence, m=18, 13, 11, 9, 8 & 7 for	
respective grade of concrete 15,20,25,30	
& 40.	
(6) C=compressive Force of Concrete	(6) Cu=compressive Force of concrete.
T=Tensile Force by Steel	Tu= Tensile Force of steel
(7) Lever Arm $(1 \text{ V}_2/2)$	(7) Lever Arm
Za=Actual lever Arm=(d-Xa/3)	Actual lever arm Z=(d-0.42Xu)

Zc=Critical Lever Arm=d-Xc/3	Critical Lever Arm Zumax =d-0.42xumax
(8) Critical neutral axis =Xc	(8)Critical Neutral Axis Xumax
(m) (Permissible stress of concrete in	[0.0036/Xumax] = [(0.87fy/Es)+0.002]/(d-
bending).d /(m) (permissible stress of concrete	Xumax)
in bending) +permissible stress of steel in	Es=200000N/sq.mm
tension.	Xumax = (700)(d)/(1100+0.87fy)
(For m=18, M-15, Fe-250, X _c =0.39d)	(For M15 & Fe250,Xumax =0.53d)
$(m=18, M-15, Fe-350, X_c=0.32d)$	(For M15 & Fe 350,Xumax =0.51d)
$(m=18, M-15, Fe-415, X_c=0.28d)$	(For Fe 415,Xumax =0.48d)
$(m=18, M-15, Fe-500, X_c=0.246d)$	
	(Fe 500,Xumax =0.46/d)
(9) Stress Diagram in compression zone	(9)Stress diagram in compression zone
Triangular	Rectangular and parabolic
cbc, Xa, d-Xa, st/m, T, C, Xa/3,Za.	0.446fck,3Xu/7,4Xu/7,0.42Xu,
Here, cbc=permissible bending stress of	Tu=total tensile force, Cu=total compressive
concrete in bending	force.
Xa=Actual Neutral Axis,	
T=total tensile force, C=total compressive	
force	
(10) Compressive force in balance	(10)Compressive force in balance condition
condition	Xu=Xumax
Xa=Xc	Cu=0.36fck.Xu.b
$C=b\times Xc\times cbc/2$	Cu=0.501CK.240.0
(11) Tensile force=T=steel area×stress	(11)Tensile Force
T=Ast×st	Tu=0.87fy.Ast
	1u-0.0719.115t
(12) Actual Neutral Axis =Xa	(12)For actual neutral Axis
Xa=area moment of compression zone with	Cu=Tu
respect to neutral axis=equivalent concrete	0.36fck.Xu.b =0.87fy.Ast
area moment in tension zone with respect to	Xu=0.87fy.Ast/0.36fck.b
Neutral axis against tensile steel	Xu=2.416 fy.Ast/fck.b
$b \times Xa \times Xa/2 = m \times Ast(d-Xa)$	
(13) Permissible position of Xa and Xc	(13) Permissible position of Xu and Xumax.
Xa <xc=under reinforced<="" td=""><td>Xu<xumax =under="" reinforced<="" td=""></xumax></td></xc=under>	Xu <xumax =under="" reinforced<="" td=""></xumax>
Means less provided steel as per requirement	Means less provided steel as per
and by this cause steel will fail before	requirement and by this cause steel will fail
collapse.	before collapse.
Xa=Xc=balance section	Xu=Xumax =balance
Means steel provided is same as required, by	Means steel provided is same as required, by
this cause both will fail simultaneously.	this cause both will fail simultaneously.
Xa>Xc=over reinforced , Means provided	Xu>Xumax =over reinforced =not desired
steel is more than required, hence concrete	
will fail before the steel.	
(14) Percentage of steel	(14) Percentage steel
P%=Ast×100/b.d	p%=Ast×100/b.d
(15) Permissible steel	(15) For Permissible Steel
For M-15 and Fe-350	Cumax=Tumax
p% steel=50×X1xcbc/st	0.36.fck.Xumax.b=0.87fy.Ast
r's stool oo annood st	0.00111111111110-01071j.110t

0.42%	p% steel=41.4.Xumax.fck/fy. d
For M25,Fe-415, p%=0.53%	(For M15, Fe-350,p% steel =0.88%)
For M30,Fe-415,p%=0.61%	For M25, Fe-415,p% steel=1.2%
Less steel than Limit State	For M30,Fe-415,p%=1.44%
	More steel than Working Stress
(16) Critical Lever Arm	(16) Critical Lever Arm
Z = (d - Xc/3) = (d - 0.33Xc)	Z=(d-0.42Xumax)
For M-15 & Fe-250,Xc=0.39d, Z=0.87d	For M15,Fe250,Z=0.78d
For M-15 & Fe-350, Xc=0.32d,Z=0.89d	For M15,Fe350,Z=0.79d
For M-15 & Fe-415,Xc=0.28d, Z=0.90d	For M15,Fe415,Z=0.80d
(17) Moment of resistance	(17) Bending Moment Condition
(A) Xa <xc= reinforced<="" td="" under=""><td>(A) Xu< Xumax =Under Reinforced ,Steel</td></xc=>	(A) Xu< Xumax =Under Reinforced ,Steel
Moment =M=M steel=Tensile force $\times Z$	will fail earlier.
$M = (Ast \times st)(d - Xa/3)$	Moment Mu steel=Tu× lever arm
(B) Xa=Xc=balance section	Mu steel=0.87fy.Ast(d-0.42Xu)
$M \text{ steel}=Ast \times st(d-Xa/3)$	(B) Xu=Xumax =balance
Or M concrete $=b \times Xa \times cbc(d-Xa/3)/2$	Mu=0.36fck.Xumax.b(d-0.42Xumax)
(C) Xa>Xc=over reinforced	(C) Xu>Xumax = over reinforced = not
Concrete will fail.	desired in limit state.
M concrete $=b \times Xa \times cbc(d-Xa/3)$	Mu=Mumax
$W Concrete = 0 \times Aa \times COC(0 - Aa/5)$	
$(10) \mathbf{M} + \mathbf{D} + \mathbf{E} + \mathbf{E}$	=0.36fck.Xumax.b(d-0.42Xumax)
(18) Moment Resistance Factor	(18)Moment Resisting Factor
$Q=0.5\times cbc \times X1\times Z1\times b\times d\times d$	Xu=Xumax
cbc=permissible compressive stress of	Mu limit=Cu max ×Z
concrete in bending	(For M15,Fe250,Xumax =0.53d)
X1=Coefficient of neutral	Mu limit=0.149fck.b.d.d
Axis,Z1=Coefficient of lever Arm.	Qu=0.149×15=2.235N/sq.mm for M15
For M-15 & Fe-250,	
Q=0.5×5×0.39×0.87=0.85N/sq.mm.	
(19) Designed Load	(19)Designed Load or Factored Load
Designed load=Incoming Load	Designed load=1.5×Incoming Load
If incoming load=50 KN/m then	If incoming load=50KN/m, Designed
Designed load=50KN/m	load=75KN/m
	Factored moment=1.5×Given Moment
	Factored Shear =Vu=1.5×Given Shear
(20) Nominal Shear stress or incoming	(20) Nominal Shear stress or incoming
Shear Stress	Shear Stress
tv=V/b.d	tuv=Vu/b.d
V=maximum shear force	Vu=maximum factored shear force
b.d= shear area	
	(21)Sheen Eenee have been by the t
(21) Shear Force borne by bent-up bar	(21)Shear Force borne by bent-up bar V_{1}
$Vb=Asv \times sv \times Sin 45^{\circ}$	Vub=Asv×sv×Sin45°
=0.707×Asv×sv	=0.707×Asv×0.87fy=0.757×Asv×fy
Here sv=permissible tensile or shear stress	Here Asv=total cross sectional area of bent-
similar to st	up bars.
Asv=area of bent-up bar	
(22) Shear Force borne by Stirrups	(22)Shear force borne by stirrups
$Vs=Asv \times sv(d/s)$ Or $S=Asv \times sv \times d/Vs$	$Vus=Asv \times sv(d/s)$ Or Spacing

Here S=spacing	s=Asv×sv×d/Vus
d=effective depth of beam	Here s=spacing of stirrups. sv=0.87fy,
Asv=area of two leg stirrup.	Asv=cross sectional area of stirrup.
	For 8mm size two leg stirrups
	Asv=2×50=100sqmm.
(23) Shear Force borne by Concrete	(23) Shear Force borne by Concrete
tc=permissible bond stress of concrete,	tuc=permissible bond stress borne by
±	-
dependent on % age steel of straight bar at end	concrete dependent on % age steel and grade
bottom and concrete grade.	of concrete
This can be taken from tables by Interpolation.	For<=0.15%,0.25%,0.50% of steel
%age steel =0.15% or less, tc=0.18, 0.18, 0.19	M15,tuc=0.28,0.36,0.48N/sq.mm
for M15,20,25 respectively.	M20,tuc=0.29,0.36,0.49
%age steel =0.25%,tc=0.22, 0.22, 0.23	M25, tuc=0.29, 0.37, 0.50 respectively.
%age steel =0.50%,tc=0.29, 0.30, 0.31	
(24) Shear Strength of concrete for Slab	(24) Shear stress borne by concrete for slab
The value of K is multiplied by tc for slab.	= k×tuc
K=coefficient dependent on slab thickness.	K= coefficient dependent on slab thickness.
Slab depth=150mm or less, 175mm, 200mm,	Slab depth=150mm or less, 175mm,
225mm, 250mm, 275mm,300mm or more.	200mm, 225mm, 250mm, 275mm, 300mm
K=1.3, 1.25, 1.20, 1.15, 1.10, 1.05, 1.00	or more.
respectively.	K=1.3, 1.25, 1.20, 1.15, 1.10, 1.05, 1.00
respectively.	respectively.
(25) Maximum Shaan Strang harris hu	
(25) Maximum Shear Stress borne by	(25) Maximum Shear stress borne by
Concrete	concrete.
tc maximum = dependent on concrete grade.	tuc maximum = dependent on concrete
tc maximum =1.6,1.8,1.9,2.2,2.3,2.5 for beam	grade.
under respective grade of concrete M-	tuc maximum =2.5,2.8,3.1,3.5,3.7,4.0 for
15,20,25,30,35,40.	respectively concrete grades
tc maximum =0.8,0.9,0.95,1.1,1.15,1.25 for	M15,20,25,30,35,40.
slab under concrete grade15,20,25,30,35,40.	tuc maximum = 3.25, 3.5, 3.72, 4.025, 4.07,
	4.20 for slab under concrete grade 15, 20,
	25, 30, 35, 40.
(26) tv>tc maximum =need to change the	(26) tuv>tuc maximum =need to change the
design.	design.
(27) Design for Shear Reinforcement.	(27) Design for shear Reinforcement.
(A)tv <tc 2="No" arrangement="" required<="" shear="" td=""><td>(A) <math>tuv<tuc 2="No</math"> Shear</tuc></math></td></tc>	(A) $tuv Shear$
(B)tv=tc/2 or $tv=tc$, Shear needed to adjust	
-	(B) tuc>or =tuv minimum shear
1 1 0	
S=0.87fy.Asv/0.4b,Here S=spacing, b=width	Spacing Sv=0.87.fy.Asv/(0.4b)
of beam.	
(C)tv>tc <tc beam<="" for="" maximum="" td=""><td>(C)tuv>tuc<tuc maximum<="" td=""></tuc></td></tc>	(C)tuv>tuc <tuc maximum<="" td=""></tuc>
Or	
tv>k×tc <tc maximum<="" td=""><td>or</td></tc>	or
Then tr=tv-tc here tr=remaining shear stress	tuv>k.tuc <tuc maximum<="" td=""></tuc>
Vr=remaining shear force =tr×b.d	shear remaining =tur=tuv-tuc
Vb=shear force borne by bent-up	Vur=tur.b.d
bar=0.707×Asv×sv for sin 45°, Asv=area of	Vub=0.707.Asv.sv
bent-up bar, Vs=Vb/2=shear force borne by	Vus=Vur/2 and Vub>Vur/2

stirrups.	Spacing S=0.87fy.Asv.d/Vus
Here Vb>Vr/2, Spacing S=Asv×sv×d/Vs	0.75d or 300mm
S should not be more than the lesser value of	Overall whichever is less.
0.75d or 300mm.	
(28) Development length	(28) Development Length
Ldt=development length in tension	Ldt=development length in tension
$=$ bar dia. \times st/4 tbdt	=0.87fy.bar diameter/4tbdt
Here, tbdt =permissible bond stress in tension	tbdt is dependent on bar size, surface
st=permissible tensile stress of steel.	roughness of bar, compaction and grade of
Value of tbdt=0.6,0.8,0.9,1.0,1.1 for Fe-250	concrete.
grade and respective grades of concrete like	tbdt =1.2,1.4,1.5,1.7,1.9 for plain bars for
M-15,20,25,30,35	respective concrete grades M20, 25, 30, 35,
Value of tbdt=0.96, 1.28, 1.44, 1.60, 1.76 for	40.
Fe-415 or 500 grade with respective concrete	Also tbdt for deformed bars=1.92, 2.24, 2.4,
grade like M-15, 20,25,30,35.	2.72, 3.04 for respective grades of concrete.
(29) Development length of steel in	(29) Ldc =development length of steel in
compression =Ldc= bar dia. \times st/5 tbdt	compression =0.87fy.bar diameter/5 tbdt.
(30) Checking in development length	(30) Checking in development length
$Ldt \le 1.3 M1 \div V + Lo$	Ldt<=M1÷Vu+Lo
Here M1=bending moment of straight bar at	
ends bottom, V=shear force, Lo= Anchorage	
length=12×bar dia or d, whichever is more.	
(31) Design step for singly RCC beam	(31) Design of Singly reinforced beam
(a) depth d assumed=span/10 to span /15	(a) Assumed d=span/10 to span /15
(b) $b=d/2$ to $d/3$	(b) $b=d/2$ to $d/3$
(c) Dead load of beam Wd= $b \times D \times 1 \times density$ of	(c) Dead load of beam
rcc	$Wd=b\times D\times 1\times density of rcc$
(d) Live Load wlive=Given	(d) Live Load wlive=Given
(e) Total load w=wd+wlive	(e) Total load w=wd+wlive
(f) Effective length $l=L+B$ or $L+d$ whichever	
is less.	Factored load wu=1.5 (wd+wl)
(g) Maximum bending Moment M=w.1.1/8 say	(f) Effective length $l=L+B$ or $L+d$
(h) moment resisting factor	whichever is less.
Q=0.5.cvc.(X1).(Z1)	(g) Maximum Bending Moment
(i) d required= $M/Q.b$ whole power 0.5	M=wu.1.1/8
(j) compare d required & d assumed	(h) Qu=0.36fck.Xumax
D assumed> or = d required it's ok	(10.42Xumax/d)/d
If d assumed < d required, then again	(i) d required = $(Mu/Qu.b)$ whole power
design.	0.5
(k) Ast required= $M/st.z1.(d required)$	(j) compare d required & d assumed
(l) Ast min.=0.85 bd/fy	5 / 1 1
(ii) Ast max= 0.04 b.D	Condition:-
(n) Ast required>Ast min, Ast required <ast< td=""><td>D assumed> or = d required it's ok</td></ast<>	D assumed> or = d required it's ok
max	If d assumed< d required, then again design.
(o) N=number of bars=Ast/ast	If under reinforced means d assumed>d
Ast actual=(N)(ast)	required
(p) Decide number of bent-up bars.	Mu=0.87fy.Ast.d[1-Ast.fy/b.d.fck]
(q)Check the beam in Shear and Bond, not in	······································
(1) chock the ocult in Shour and Bond, not in	

deflection	(k) Get Ast required
	No of bars required =Ast/ast round off.
IN SHEAR	For balance means d=d required
tv>tc <tc beam<="" for="" maximum="" td=""><td>Mu=Ast×0.87fy(d-0.42Xumax)</td></tc>	Mu=Ast×0.87fy(d-0.42Xumax)
Or	
tv>k×tc <tc maximum<="" td=""><td>(l) Ast min.=0.85 bd/fy</td></tc>	(l) Ast min.=0.85 bd/fy
Then tr=tv-tc	(m) Ast max=0.04b.D
here tr=remaining shear stress	(n) Ast required>Ast min,
Vr=remaining shear force =tr×b.d	Ast required <ast max<="" td=""></ast>
Vb=shear force borne by bent-up	(o) N=number of bars=Ast/ast
bar=0.707×Asv×sv for sin 45°,	Ast actual=(N)(ast)
Asv=area of bent-up bar, Vs=Vb/2=shear	(p) Decide number of bent-up bars.
force borne by stirrups.	(q)Check in shear, bond and deflection
Here, Vb>Vr/2, Spacing S=Asv×sv×d/Vs	
S should not be more than the lesser value of	IN SHEAR
0.75d or 300mm.	tuv <tuc 2="No" shear<="" td=""></tuc>
	tuc>or =tuv minimum shear
IN BOND	Spacing Sv=0.87.fy.Asv/(0.4b)
Development length	tuv>tuc <tuc maximum<="" td=""></tuc>
Ldt=development length in tension	or
=bar dia.×st/4 tbdt	tuv>k.tuc <tuc maximum<="" td=""></tuc>
Here tbdt =permissible bond stress in tension	shear remaining =tur=tuv-tuc
st=permissible tensile stress of steel.	Vur=tur.b.d
Value of tbdt= $0.6, 0.8, 0.9, 1.0, 1.1$ for Fe-250	Vul=tul.0.d Vub=0.707.Asv.sv
	Vub=0.707.Asv.sv Vus=Vur/2 and Vub>Vur/2
grade and respective grades of concrete like	
M-15,20,25,30,35	Spacing S=0.87fy.Asv.d/Vus 0.75d or 300mm
Value of tbdt=0.96, 1.28, 1.44, 1.60, 1.76 for	
Fe-415 or 500 grade with respective concrete	Overall whichever is less.
grade like M-15, 20, 25, 30, 35.	
	IN BOND
	Development Length
Development length of steel in compression	Ldt=development length in tension
=Ldc $=$ bar dia.×st/5 tbdt	=0.87fy.bar diameter/4tbdt
	tbdt is dependent on bar size, surface
	roughness of bar, compaction and grade of
Development length	concrete.
Ldt<=1.3 M1÷V +Lo	tbdt =1.2,1.4,1.5,1.7,1.9 for plain bars for
Here M1=bending moment of straight bar at	respective concrete grades M 20, 25, 30, 35,
ends bottom, V=shear force, Lo= Anchorage	40.
length=12×bar dia or d, whichever is more.	Also tbdt for deformed bars=1.92, 2.24, 2.4,
Ast=area of straight bar without bent-up bar.	2.72, 3.04 for respective grades of concrete.
	Ldc =development length of steel in
NO CHECK IN DEFLECTION	compression =0.87fy.bar diameter/5 tbdt.
	Development Length
	$Ldt <= M1 \div Vu + Lo$
	M1=Ast×0.87fy×Z
	Ast=area of straight bar without bent-up bar.

	CHECKING IN DEFLECTION service stress fs= 0.58.fy(Ast required/Ast provided) From graph get modification factor k (1/d) maximum =20.k for simply supported beam (1/d)maximum =7k for cantilever beam (1/d)actual <[1/d]maximum.
 (32) Doubly Rcc beam (a) Critical Neutral Axis Xc=(m.cbc.d/m.cbc+st 	 (32) Doubly Rcc beam (a) Critical Neutral Axis Xumax =700d/(1100+0.87fy)
 (b) Actual Neutral Axis Xa b.Xa.Xa/2+(1.5m-1)Asc(Xa-d')=m.Ast(d-Xa)	(b) Actual Neutral Axis Xu Total compressive force C C=C'+C''=compressive force due to compression zone concrete +Compressive force due to Asc
(c) Lever Arm for singly or due to concrete Z'=(d-Xc/3) Lever Arm due to Asc Z''=(d-d')	C'=0.36fck.Xu.b C''=fsc.Asc-fcc.Asc C=0.36fck.Xu.b+Asc(fsc-fcc) Tensile force=T=0.87fy.Ast C=T So, Xu=(0.87fy.Ast-Asc.fsc)/0.36fck.b
 (d) Compressive Force due to singly C'=b×Xc×cbc/2 Compressive Force due to Asc C''=(1.5m-1)Asc×cbc' Here cbc'=stress on the surface of Asc. cbc'=cbc(Xc-d')/Xc	Neglecting fcc (c) Lever Arm For Z'=L.A.=(d-0.42xumax) For Z''=L.A.=(d-d') (d) Compressive Force
 (e) Bending Moment M'=bending moment due to singly =C'×Z' =b×Xc×cbc (d-Xc/3)/2 M"=Bending Moment due to Asc (1.5m-1) Asc× cbc'(d-d")	C=0.36.fck.Xumax.b+Asc.fsc (e) Bending Moment M=M'+M" M'=C'×Z'=0.36.fck.Xumax.b(d-0.42xumax) M"=C"×Z"=fsc. Asc (d-d') (f) Stress of steel in compression fsc Dependent on d'/d
 (f) Stress of Steel in Compression sc=130,130,190,190N/square mm for Fe- 250,350,415,500. Asc=10 square mm Equivalent area of concrete in compression= (1.5×18-1)×10=260 square mm.	fsc=217,217,217,217 for Fe-250, respectively d'/d for 0.05,0.10,0.15,0.20. fsc=355,353,342,329 for Fe-415. fsc=424,412,395,370 for Fe-500. fsc=458,441,419,380 for Fe-550.

(g) Determination of Moment	Xumax=700d/1100+0.87fy
Given data b,d,Asc,Ast,d'.	Condition
Xc=m.cbc.d/m.cbc+st	Xu>Xumax=over reinforced
Get Xa from equation	Mu is calculated by Xumax=Xu
b.Xa.Xa/2 + (1.5m-1)Asc(Xa-d') = m.Ast(d-Xa)	
	If Xu=Xumax
Condition:- If Xa>Xc=over reinforced	Mu=0.36fck.Xumax.b (d-0.42 Xumax) +
Concrete Will fail, hence moment	Asc. (fsc-fcc)(d-d')
Mc=b.Xa.cbc(d-Xa/3)/2+(1.5m-1)Asc.cbc'(d-Xa/3)	If Xu <xumax< td=""></xumax<>
d')	Mu=0.36fck.Xu(b)(d-0.42Xu)+Asc(fsc-
	fcc)(d-d')
If Xa=Xc=balance section	
Mc=b.Xa.cbc(d-Xa/3)/2 + (1.5m-	
1)Asc.cbc'(d-d')	(i)Finding Asc and Ast
If Xa <xc=under reinforced<="" td=""><td>Ast'=Mulimit /(0.87 fy(d-0.42Xumax)</td></xc=under>	Ast'=Mulimit /(0.87 fy(d-0.42Xumax)
Steel will fail.	Mu"=Mu-Mlimit
Now transfer the st to cbc' at top of beam on	Ast"=Mu"/(0.87.fy)(d-d') Ast=Ast'+Ast"
compression zone.	
Also at Asc get the value of cbc"	Asc=Mu''/fsc.(d-d')
b.Xa.cbc'(d-Xa/3)+(1.5m-1)Asc.cbc"(d-d')	
(i) Finding Asc and Ast	
Xc=(m.cbc.d/m.cbc+st)	
cbc'=cbc(Xc-d')/Xc	
M1=Moment due to singly =b.Xc.cbc(d-	
Xc/3)/2	
M2=M-M1=Moment due to Asc	
M2=(1.5m-1)Asc.cbc'(d-d')	
Asc can be had from above.	
Ast1=steel required for singly.	
Ast1=M1/st(d-Xc/3)	
Ast2=area of steel in tension due to Asc	
Ast2=M2/sc(d-d')	
Ast=Ast1+Ast2=total steel in tension.	
(33) Tee Beam Design	(33) Tee Beam LSM
(a) Depth of T beam	(a) Depth of T beam
d=effective depth = $span/10$ to $span/15$,	d=Span/10 to Span/15
bw = width of beam= $d/3$ to $2d/3$	Breadth of beam bw = $d/3$ to $2d/3$
(b) bf= width of flange= $lo \div 6+ bw+6Df$	(b) Width of flange $=$ bf $=$ lo \div 6+bw +6Df
Or	Or
bf=bw+A/2+B/2	bf=bw+A/2+B/2
(c) NEUTRAL AXIS	(c) NEUTRAL AXIS
Critical Neutral Axis Xc=(m.cbc.d/m.cbc+st)	Critical Neutral Axis = Xumax =700d/
Actual Neutral Axis Xa, when Xa <df or<="" td=""><td>(1100+0.87fy)</td></df>	(1100+0.87fy)
Xa=Df	Actual Neutral Axis Xu, when Xu <df or<="" td=""></df>
Aa-DT bf.Xa.Xa/2 =m.Ast.(d-Xa)	Xu=Df
01.1xa.1xa/2 -111.1x31.(U-1xa)	

If Xa>Df, then	Xu=0.87.fy.Ast/0.36.fck.bf
bf.Df(Xa-Df/2)+bw (Xa-Df)(Xa-Df)/2 =m.Ast(d-Xa) Get Xa.	If Xu>Df, Also Xu=Xumax and Df<3.Xu/7 or Df=3Xu/7, then stress block will lie
If Xa <xc=under reinforced<="" td=""><td>rectangular and remaining parabolic.</td></xc=under>	rectangular and remaining parabolic.
Xa=Xc=balance Xa>Xc=over reinforced	If Df>3.Xu/7, then stress block will lie rectangular upto 3Xu/7 and rest parabolic.
(g)Lever Arm	
Xa <df arm="d-Xa/3</td" lever=""><td>If Xumax =Xu,Xu>Df and Df/d< or =0.2 or</td></df>	If Xumax =Xu,Xu>Df and Df/d< or =0.2 or
Xa=Df Lever Arm=d-Df/3	Df<3Xu/7
Xa>Df Z'=d-y Z''=[d-(Df+(Xa-Df)/3]	
(h) Compressive Force C	Cu=0.36.fck.bw.Xumax+0.446fck(bf- bw).Df
When Xa <df< th="">C=bf.Xa.cbc(d-Xa/3)/2When Xa=DfC=bf.Df.cbc(d-Df/3)/2</df<>	Total tension Tu= 0.87 fy.Ast
When Xa>Df C=C'+C" C'=bf.Df(cbc+cbc')(d-y')/2 y'=(2.cbc+cbc')(Df/3)/(cbc+cbc')	IF Xumax =Xu,Xu>Df and Df/d>0.2 Cu=0.36.(Xumax/d)fck.bw.d.d + 0.45 fck(bf-bw).Yf
C''=(bw)(Xa-Df)(cbc'/2)(Z'') $Z''=d-[Df+(Xa-Df)/3]$	Here Yf=0.15 Xu+0.65 Df Xumax >Xu, Xu>Df, Df<3Xu/7 Cu=0.36fck.bw.Xu+0.446 fck(bf-bw).Df
	Tu=0.87fy.Ast Xumax >Xu>Df, Df>3Xu/7
	Cu=0.36fck.bw.Xu+ 0.45fck.Yf(bf-bw)
	Here Yf=0.15Xu + 0.65.Df, Yf <df or="" yf="Df</td"></df>
	Xu>Xumax means over reinforced Redesign
(34) Column Design	(34) Column Design
(a) Effective Length 1	(a) Effective Length l
l=0.65 L for both end fixed	l=0.65 L for both end fixed
1=0.80L when one end fixed and another end	1=0.80L when one end fixed and another end
free.	free.
(b) Short Column	(b) Short Column
1/b<=12	e-min=1/500 +D/30 >or=20 mm
Long Column	e-min should not be greater than 0.05D
1/b>12	
Column Axial Load P=Ac.cc+Asc.sc	Column factored load Pu=0.4fck.Ac+0.67fy.Asc
(c) Longitudinal bar dia=12 mm to 50 mm.	
Lateral ties bar dia=8mm to 12 mm or bar	(c) Longitudinal bar dia=12 mm to 50 mm.
dia/4, whichever is maximum.	Lateral ties bar dia=8mm to 12 mm or bar dia/4, whichever is maximum.
(d) Independent ties spacing	

Least dimension of column	(d)Independent ties spacing
or	Least dimension of column
16×bar diameter or	or
or	16×bar diameter or
300mm whichever is less.	or
	300mm whichever is less.
(e) Spiral reinforcement	
Pitch max=75 mm or Core diameter/6	(e) Spiral reinforcement
whichever is minimum	Pitch max=75 mm or Core diameter/6
Pitch minimum =25 mm or $3 \times$ ties dia	whichever is minimum
Whichever is less.	Pitch minimum =25 mm or $3 \times$ ties dia
	Whichever is less.
(f) cbc and cc value	
M15-cbc=5, cc=4, M20-cbc=7, cc=5,	(f) NO NEED
M25-cbc-8.5, cc=6, M30-cbc-10, cc=8,	
Fe-250-st=140, sc=130, Fe-350-st=190,	(g) Strength for short Column for non
sc=190,	helical
Fe-415-st=230, sc=190,Fe-275-st=275,	Factored load Pu=0.4fck.Ac+0.67fy.Asc
sc=190 N/square mm.	
(g) Strength for short Column for non helical	
P=Ak.cc+ Asc.sc	
Ag=gross area of column = $3.14 \times d \times d/4$	
Dk=Core diameter	
=D-2×cover+2×ties diameter Ab C_{ave} (2.14) Db $Db(4)$ Acc	
Ak=Core Area=(3.14×Dk×Dk/4)-Asc	
Vus=volume of spiral for per pitch height.	

CONCLUSION

The title demonstrates the pros and cons, while differentiating the WSM to LSM method of designing of RCC structures. In existing scenario LSM method is in vogue and while designing, the incoming load is multiplied by load factor 1.5 and also the permissible stresses are more in steel and concrete in bending and in compression too. Even this act, the section in LSM remains small and steel used remains more than WSM, even this, the valuation remains economical for LSM. Though steel is costlier than concrete by 70 times, even than designing of RCC sections through LSM are cheaper. The technical paper is covering maximum differentiation as seemed sufficient and enough for learning purpose. Effective points will enhance the reader's knowledge.

REFERENCE

- 1) Reinforced Cement Concrete Structure Book (ISBN-978-81-944036-9-2) from M.K.VARSHANEY published book from JPN Publication Meerut, edition 2021-22.
- 2) Quantity Surveying and Valuation book from M.K.VARSHANEY published from Nav Bharat Publication Meerut edition 2020-21
- 3) Civil Estimating Costing and Valuation book from Manoj Kumar Varshaney, published from Nav Bharat Publication Meerut edition 2005
- 4) Design of RC Structures from M.K.Varshaney, published under JPN Publication Meerut, edition 2019-20

- 5) Valuation of Methods for designing of RCC structures –A case study with working stress v/s limit state vis-à-vis ultimate load method title published in Indian Valuer journal of december2013/sept-2013 page no.1524/1078.
- 6) Valuation of strength of structural steel angle sections under I.S. Code 800-1984- A case study with equal vis-à-vis unequal angles title published under M.K.Varshaney in 30th IEC of IEI held at Guwahati during 17-20 December 2005, proceedings volume ISBN-978-81-9318-0-1 page no.163/171
- 7) Optimum Building Shapial Structures-An economical Estimation title published in Indian Surveyor of its volume july-2011-ISSN-0970-3470 page number46/51.