
Comparative Review of Approximate Multipliers
Sushree Sila P. Goswami∗†, Bikram Paul†, Sunil Dutt†, Gaurav Trivedi†

†Dept. of Electronics and Electrical Engg., Indian Institute of Technology Guwahati, India

Email: ∗sushree@iitg.ac.in

Abstract—In the digital signal processing (DSP) system,

multiplier is a significant arithmetic module. It contributes

mainly in the power consumption and speed, and efficient

multipliers are the need of the hour. Approximate comput-

ing has added a unique dimension in the area of digital

design by reducing area, power and delay. The demand of

efficient approximate multipliers is enhancing due to the

high speed and fault tolerance as well as its power effi-

ciency. This paper presents comparison of few recent ap-

proximate multiplier designs. Experimental results based

on the accuracy and circuit parameters are presented.

The accuracy parameters are amplitude data accuracy

(ACC amp), information data accuracy (ACC inf), error

rate (ER) and mean error distance (MED). The circuit

parameters are delay, power consumption, area. Based

on these parameters, the best design in terms of power

consumption and area is datapath complexity reduction

approximate multiplier which exhibits 58% less power and

61% less area as compared to broken array multiplier.

Keywords—Approximate, multiplier, Accuracy, Power, Er-

ror Rate. I. INTRODUCTION

A descriptive view of the accuracy parameters are

proposed in [1] and [2], which are: Accuracy for am-

plitude data (ACCamp) : It is used to quantify the errors

in the amplitude, and is represented as ACC(amp) =
1− (RcRe)/Re , where Rc is the correct result and Re

is the result of the approximate multiplier. Accuracy for

information data (ACCinf) measures error significance

and can be represented as ACCinf = (1 − Be)/Bw,

where Be is the number of error bits and Bw is the

bit width of the data. The error rate is defined as the

probability of occurrence of an error. Mean Error Dis-

tance means value of the error distances of all possible

outputs for each input of a circuit is called the mean error

distance. A descriptive view of the circuit parameters

are: Delay: The propagation delay or delay is the time

delay between the 50%-transition of the rising/falling

input voltage and the 50% -transition of the falling/rising

output voltage. Power Consumption: When the transistor

makes a transition from one state to another, there is a

consumption of power in the process, which is calculated

in this analysis. Area: Area is measured according to

three factors, area covered (µm2), number of gates and

number of transistors.

II. CATEGORIES OF APPROXIMATE MULTIPLIERS

A. Approximate Error Tolerant Multipliers:

1) 2 × 2 Under designed Multiplier:: This design is

proposed in [3]. It introduces error into the multiplier

using the 2 × 2 multiplier as a building block. The

motivation behind this design is to introduce a 4-bit result

in 3-bits. So, the multiplication of 3×3 will be 7 instead

of 9. Fig. 1 shows the gate level circuit of the multiplier.

Partial products are produced by using the inaccurate

2× 2 block and then adding the shifted partial products

larger multipliers are built. Fig. 2 shows the description

of the design.

b

b

b

b

a

a

a

a

out 2

out 1

out 0

1

1

1

1

0

0

0

0

Fig. 1: Gate level circuit of the multiplier

x

AH AL

XH XL

XH

XH

AL

AL

AH

AH

XL

XL

x

x

x

x

Fig. 2: Description of a large multiplier

2) Datapath complexity reduction approximate multi-

plier:: This multiplier design is proposed in [4]. Two

changes have been carried out in [3] to design this

approximate multiplier. First, by approximating out0 to

0, we further approximate the 2 × 2 multiplier building

block . Though the critical path of the resulting multiplier

remains unchanged, the area has reduced. Fig. 3 shows

the logic functions of the approximate 2× 2 multiplier.

The second improvement that we propose is the

manner in which a bigger multiplier is assembled. The

978-1-7281-6468-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 23,2020 at 02:25:40 UTC from IEEE Xplore. Restrictions apply.

b

b

b

b

a

a

a

a

out 2

out 1

out 0

1

1

1

1

0

0

0

0

Fig. 3: Logic functions of the approx. 2× 2 multiplier

multiplier in [3] utilizes the equivalent 2 × 2 surmised

multiplier to figure every single incomplete item. Rather,

three degrees of guess are presented inside the bigger

multiplier. The least huge halfway item with greatest

level of guess, the center incomplete items with medium

estimation and the most huge fractional item with no

guess are determined. The inspiration driving presenting

three degrees of estimate is when two huge numbers are

duplicated; just the lower fractional items are figured

with guess. This improves the exactness of the multiplier

contrasted with the reference multiplier.

3) Error Tolerant Multiplier: : The above mentioned

approximate multiplier design is introduced in [5]. The

multiplication algorithm can be explained as shown in

Fig. 4. To begin with, the information operands are part

into two sections: a duplication part in which various

higher request bits are incorporated and a non-increase

part which is comprised of the rest of the lower request

bits. The duplication part experiences precise augmen-

tation process. For the non-augmentation part, checking

accomplished for each piece position from left to right

(MSB to LSB) and the checking procedure is finished

when either or both of the two operand bits are “1”

and all the bit positions are set to “1” from that bit

onwards. The situation when both operand bits are “0”,

the comparing item bit is set to “0”.

101110 011011
x 010011 001001

101110 01111111111
101110

000000
000000

101110
101110
01101101010 01111111111
Multiplication

Part
Non-Multiplication

Part

Fig. 4: Example of the approx. multiplication algorithm

4) Accuracy Configurable Multiplier(ACMA) :: The

ACMA design is proposed in [6]. It improvises the

recursive multiplication architecture and designs a new

approximate pipelined architecture. The recursive multi-

plication builds a recursive tree. Let A be the multipli-

cand and X be the multiplier and both are assumed to be

of 2b bits each. A and X can be written as A = AHAL
and X = XHXL , where each of them are of b bits

each. The most critical 2b bits (out of an aggregate of

4b bits) considered as exact to a huge degree. Further,

out of the least noteworthy 2b bits remaining, lower

b/2 bits would be exact and upper 3b/2 bits would be

incorrect. The lower b/2 bits are kept exact in light of

the fact that it doesn’t require a great deal of equipment

and simultaneously exactness increments. As it were, in

the last item, out of 4b bits least huge b/2 bits will be

exact and most huge 2b bits will be precise to a huge

degree and remaining 3b/2 bits will be off base. The

approximate multiplication algorithm is shown in Fig. 5.

AH XH AL XL

AL

AH

XH

XL

Final Product (4b) bits

Fig. 5: The approx. multiplication algorithm of ACMA

B. Truncated Multipliers :

In [7], it is mentioned that multiplication of two

numbers brings about an product with twice the original

bit width. It is required to truncate the product bits to

the desired accuracy to reduce area cost, leading to the

structure of truncated multipliers, or fixed-width multi-

pliers. By and large, there are two truncated multiplier

structure techniques, in particular, steady and variable

remedies, contingent upon how to repay the mistake

acquainted due with the end of the least noteworthy

halfway item (PP) bits. Consistent amendment structures

diagnostically process the normal truncation mistake of

the truncated PP bits and blunder is remunerated by

including a line of steady into the lattice of the PP bits.

Variable amendment plans diminish the all out truncation

mistake by thinking about the least noteworthy piece of

the PP bits.

Fixed-width multipliers is a subset of truncated mul-

tipliers which figure just n significant bits (MSBs) out

of the 2n-bit product for n × n increase and additional

revision/remuneration circuits are utilized to diminish

truncation errors. Fixed-width multipliers are generally

utilized for advanced signal processor activities, for ex-

ample, filtering, convolution, and fast Fourier or discrete

cosine change. Along these lines, in this discussion, just

the basic fixed width multiplier is examined with low

error.

Low error fixed-width multiplier: The low error fixed-

width multiplier is proposed in [8]. Parallel multiplier

circuits consist of two parts: one for the higher order

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 23,2020 at 02:25:40 UTC from IEEE Xplore. Restrictions apply.

partial products (MP) and one for the lower order partial

products (LP). The most basic fixed width multiplier

removed the LP and substituted with a 0 to be carried to

the residual part to generate MP. This reduced the area

to half, but also generated a large amount of error. So,

as to reduce the error, a circuit Cg is designed and is

placed in place of 0. It consists of n − 2 AO cells and

one 2- input AND gate. Each AO cell consists of one

2-input AND gate and one 2-input OR gate. Each input

of Cg is fed with a proper product term XiYj i.e. the

partial products.

C. Bio-inspired imprecise multiplier

Instead of giving the precise value of the result,

Bio-inspired Imprecise Computational blocks (BICs) [9]

provide an applicable estimation of the same at a lower

cost. In terms of area, speed, and power consumption,

these novel structures are more efficient with respect

to their precise counterparts. Here the Broken Array

Multiplier or BAM is discussed which is a bio-inspired

imprecise multiplier structure.

The Broken Array Multiplier (BAM): The broken-

array multiplier (BAM), proposed in [9], is fundamen-

tally the same as the design of an array multiplier.

An Array multiplier with an m-bit multiplicand and

n-bit multiplier comprises of mxn comparative cells

called carry-save adder (CSA), trailed by a m-bit vector

merging adder which converts carry-save redundant form

to regular binary form. Every cell contains a 2-input

AND gate to produce partial product and a full-adder

(CSA) to add the partial products into the running sum.

A BAM breaks the CSA array and cells giving smaller

and faster circuit while providing approximate results

are eliminated. Depending on two introduced parame-

ters namely Horizontal Break Level (HBL) and Vertical

Break Level (VBL), the number and position of the elim-

inated cells are decided. The HBL=0 means that there is

no horizontally eliminated CSA cell. If HBL increases,

the horizontal dashed line moves downward and all cells

falling above the dashed line are eliminated. So also the

VBL=0 does not eliminate any CSA cells but as the

VBL increases, the vertical dashed line moves left and

eliminates all separated right-side cells. The respective

outcome of the all eliminated cells are considered to be

null. Fig. 6(a) shows the hardware structure of BAM,

Fig. 6(b) shows the CSA cell and Fig. 6(c) shows the

vector merging adder cell.

D. Inaccurate [4:2] Compressor based multipliers

A [4 : 2] compressor accepts four equal weights as

input and produces two outputs. It may be designed by

Horizontally-omitted cell Vertically-omitted cell

Horizontal Break

Level (HBL)

Vertical Break

Level (HBL)

++

Xi

Cout
Sout

Cout
Sout

Cin

Sin

Sin Y iCin

Xi Y i

CSA

Cell
Cout

P i

Ci

P i

Cin

Cout

A B
A B

Merging

Adder

Cell

(a)

(b) (c)

Fig. 6: (a) BAM (b) CSA array (c) Vector merging Adder

using two (3, 2) counters. An intermediate carry, ti is

fed into the next column and accepts a carry, ti−1, from

the previous column, [10].

Inexact (or approximate) computing is an appealing

paradigm for digital processing at nanometric scales.

Approximate computing is especially interesting for

computer arithmetic designs. The difference between an

inaccurate computer and an ordinary counter is that an

ordinary counter gives the outcome 1002 when all the

4 inputs are 1, but an inaccurate computer simplifies

the outcome by representing the 3-bit outcome in 2-bits,

[2]. This classification manages three inexact designs of

inexact compressors to be applied on a Dadda Multiplier.

1) Design 1:: In an accurate compressor, out of 32
states, the carry output has the same value of the input

Cin in 24 states. In Design 1, proposed in [11], by

changing the value of the other eight outputs, the carry

is simplified to:

Cin × Carry = Cin (1)

Being the higher weight of a binary bit, an erroneous

value of Carry output signal will create a distinction

estimation of two in the output. For example, if 01001
is given as the input pattern, then the right output is

generated that is 010 which is equivalent to 2. By

simplifying the carry output to Cin, the inexact com-

pressor will produce the 000 pattern as output which is

equivalent to value 0. This significant contrast can not be

adequate. However, it has to be redressed or decreased

by rearranging the Cout and Sum signals. Specifically,

the difference between the approximate and the exact

outputs can be reduced by simplifying the sum to a value

of 0 and the the complexity of its design is also reduced.

Additionally, as due to the presence of certain errors in

the sum signal, the delay of creating the inexact sum

reduces resulting in reduction of the overall delay of the

design. Fig.7 shows the gate level structure of Design 1.

Sum = Cin((x1⊕x2) + (x3⊕x4)) (2)

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 23,2020 at 02:25:40 UTC from IEEE Xplore. Restrictions apply.

Cout = ((x1x2) + (x3x4)) (3)

Cout

x1x2x3x4

Sum

Carry

Cin

'

'

'

Fig. 7: The gate level structure of Design1

2) Design 2:: To additionally increase performance

as well as to decrease the error rate, a subsequent

design of an inexact compressor is also proposed in

[11]. In the previous part, the proposed equations for

the approximate Carry and Cout can be interchanged

as the Carry and Cout outputs have the same weight,.

In this new design, Cout is constantly equal to Cin and

carry utilizes the right hand side of (3). As Cin is zero

in the first stage, in rest of the stages, Cout and Cin will

be zero. Therefore, in the hardware design, Cin and Cout

can be overlooked. Fig. 8 shows the gate level structure

of this inexact 4 − 2 compressor and the expressions

below gives its outputs.

Sum = Cin((x1⊕x2) + (x3⊕x4)) (4)

Carry = ((x1x2) + (x3x4)) (5)

x1x2x3x4

Sum

Carry

'

'

Fig. 8: The gate level structure of Design 2

3) Design 3:: In Design 3, proposed in [2], the main

idea is to use a 2 : 1 MUX in place of a XOR gate

to reduce the delay and the power consumed by the

multiplier. Let x1, x2, x3 and x4 are the four inputs and

Sum and Carry are the two outputs. The error occurs

when all the four summands are 1 and the output 1112
is reduced to 102. It can be used to build an inaccurate

4×4 multiplier. It helps to reduce the adding stages from

four to two to reduce the delay and power.

E. Approximate Logarithmic Multiplier :

A strategy of computer multiplication and division is

proposed in [12], which utilizes binary logarithms. The

logarithm of a binary number may be found approxi-

mately from the number itself by simple shifting and

counting. A basic add or subtract and shift operation is

needed to multiply or divide. Since the logarithms used

are inexact, there can be errors in the outcome.

Simple Mitchell based logarithmic multiplier:: The

simple Mitchell based logarithmic multiplier is proposed

in [12]. It uses the concept of finding the multiplication

of two numbers using binary logarithms. The arithmetic

used is an approximation to the actual logarithm. To

find the binary logarithm of a binary number, avoid

the position of the most significant 1, and consider the

number as a binary fraction. For example, approximate

lg13 is 3.625 decimal and 11.101, where the largest

characteristic is 3, since 13 consists of 4-bits. A step

wise process is explained below.

Let A and B be two registers containing the two

numbers, whose word size is of 8 bits. So, the largest

characteristic will be 7.

Step 1: Shift A and B left until their most signif-

icant ”one” bits are in the left-most positions. After

the shifting is completed the counters will contain the

characteristics of the logarithms of A and B.

Step 2: Shift bits 0 − 6 of A and B into bit positions

0 − 6 of registers C and D. C and D now contain the

logarithms of the original numbers.

Step 3: Add C + D → E. The result is now stored in

register E.

III. SIMULATION RESULTS:

The experimental results are divided in two parts:

(i) Error Characteristics: It discusses the accuracy

parameters of all the aforesaid approximate multiplier

designs architectures.

(ii) Circuit Characteristics: It discusses the circuit

parameters of the five aforesaid approximate multiplier

designs architectures from four of the five categories.

A. Error Characteristics:

The accuracy parameters are evaluated using MAT-

LAB R2013a software for the approximate multiplica-

tion algorithms. It is observed that with the increase of

bit width, the accuracy of the multiplier decreases. The

approximate functions are simulated with 10000 random

inputs. Some of the characteristic observations in the

accuracy parameters are discussed here.

1) Acc amp: The value of Acc amp < 1. The max-

imum value is observed in 2× 2 Under Designed

Multiplier, of 0.98 for its 2-bit multiplier, while

the minimum value is observed in Simple Mitchell

based Logarithmic multiplier, of −27.018 for its

16-bit multiplier. It reaches a negative value for

two designs, Datapath complexity reduction ap-

proximate multiplier and error tolerant multiplier.

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 23,2020 at 02:25:40 UTC from IEEE Xplore. Restrictions apply.

Design Name 2× 2 Under Designed Multiplier

Parameters 2 4 6 8 10 12 14 16

Delay (ns) 10.0595 20.119 30.141 40.238 50.2975 60.357 70.4165 80.476

Power (µW) 2.6574 5.3148 7.9721 10.6295 13.2869 15.9443 18.6016 21.259

Area (µm2) 15.6528 31.3055 46.9583 62.611 78.2638 93.9165 109.5693 125.222

Area (gates) 13 25 38 50 62 75 88 100

Area (transistors) 84 168 252 336 420 504 588 672

ER 0.054 0.882 0.972 0.991 0.999 1 1 1

MED 0.108 46.96 968.35 1.63E+04 2.63E+05 4.21E+06 6.70E+07 1.07E+09

Acc amp 0.98 0.296 0.082 0.082 0.009 0.004 0.0022 0.0011

Acc inf (E-04) 9.59 6.79 6.21 5.9 5.69 5.6 5.52 5.48

TABLE I: 2× 2 Under Designed Multiplier
Design Name Datapath complexity reduction approximate multiplier

Parameters 2 4 6 8 10 12 14 16

Delay(ns) 10.0595 20.119 30.141 40.238 50.2975 60.357 70.4165 80.476

Power(µW) 2.6139 5.2278 7.8413 10.4555 13.0694 15.6832 18.2971 20.911

Area (µm2) 15.4109 30.8219 46.2328 61.6437 77.0546 92.4656 107.8765 123.2874

Area (gates) 12 24 37 49 61 74 87 99

Area (transistors) 83 165 247 330 412 494 576 658

ER 0.553 0.842 0.974 0.992 0.998 1 1 1

MED 1.72 95.22 327.23 2.62E+04 1.61E+05 1.29E+07 6.08E+07 6.70E+09

Acc amp 0.528 -0.0781 0.53 -0.156 0.287 -1.23 0.117 -3.187

Acc inf(E-04) 7.82 6.19 6.15 5.66 5.61 5.41 5.45 5.28

TABLE II: Datapath complexity reduction
Design Name Error tolerant Multiplier

Parameters 2 4 6 8 10 12 14 16

ER 0.702 0.928 0.98 0.994 1 0.999 1 1

MED 41.42 115.65 253.68 1.29E+04 2.41E+05 4.21E+06 6.74E+07 1.03E+09

Acc amp 0.052 0.015 0.0055 0.0024

Acc inf(E-04) 2.81 5.34 5.89 5.33 5.4 5.57 5.41 5.41

TABLE III: Error tolerant Multiplier
Design Name Data for ACMA multiplier

Parameters 2 4 6 8 10 12 14 16

ER 0.262 0.855 0.972 0.993 0.996 1 1 1

MED 0.524 49.17 920.53 1.65E+04 2.57E+05 4.11E+06 6.84E+07 1.04E+09

Acc amp 0.905 0.271 0.0937 0.331 0.0168 0.0063 0.0033 0.0015

Acc inf(E-04) 8.89 6.77 6.24 5.89 5.8 5.64 5.5 5.52

TABLE IV: ACMA multiplier
Design Name Data for Simple Mitchell based Logarithmic multiplier

Parameters 2 4 6 8 10 12 14 16

ER 0.949 0.996 1 1 1 1 1 1

MED 2.89 45.68 710.46 1.17E+04 1.98E+05 2.98E+06 4.80E+07 7.29E+08

Acc amp -12.78 -7.61 -27.018

Acc inf(E-04) 6.04 6.06 5.83 5.57 5.47 5.37 5.31 5.29

TABLE V: Simple Mitchell based Logarithmic multiplier
Design Name Data for Low error fixed width multiplier

Parameters 2 4 6 8 10 12 14 16

Delay(ns) 10.0695 20.139 30.2085 40.278 50.3475 60.417 70.4865 80.556

Power(µW) 4.5469 9.0938 13.6406 18.1875 22.7344 27.2813 31.8281 36.375

Area (µm2) 27.898 55.7959 83.6939 111.5918 139.4898 167.3877 195.2857 223.1836

Area (gates) 20 40 60 80 100 120 140 160

Area (transistors) 146 291 437 582 728 873 1019 1164

ER 0.508 0.888 0.964 0.989 1 1 0.999 1

MED 1.39 43.92 783.96 1.17E+04 1.87E+05 2.98E+06 4.68E+07 7.62E+08

Acc amp 0.662 0.306 0.189 0.188 0.192 0.2174 0.223 0.2438

Acc inf(E-04) 8 6.52 6.01 6.02 5.81 5.81 5.71 5.66

TABLE VI: Low error fixed width multiplier

An interesting observation can be seen in this

multiplier is that the value becomes negative after

an interval of 4-bits. The value of Acc amp is

countable for this multiplier only from 10-bits

onward and for Simple Mitchell based Logarithmic

multiplier after 12-bits. This phenomenon occurs

due to large amount of error present for the lower

bits. For the approx. compressor based multiplier

designs, all the designs show almost the same

results. The results follow the order of Design 3,

2 & 1.

2) Acc inf: The values of Acc inf lie in ×10−4

range. All the designs follow the same trend and

even almost the same values for various bit widths.

The maximum value is 9.59×10−4 for 2×2 Under

Designed Multiplier for its 2-bit multiplier, while

Design Name Data for Broken Array Multiplier

Parameters 2 4 6 8 10 12 14 16

Delay(ns) 10.0788 20.1575 30.2363 40.315 50.3938 60.4725 70.5513 80.63

Power(µW) 6.2617 12.5234 18.7851 25.0468 31.3085 37.5702 43.8319 50.0936

Area (µm2) 43.5068 87.0135 130.5203 174.027 271.5338 261.0405 304.5473 348.054

Area (gates) 32 63 95 126 158 189 221 252

Area (transistors) 221 441 661 881 1101 1321 1541 1761

ER 0.421 0.873 0.97 0.986 0.999 1 1 1

MED 1.27 52.58 1.03E+03 1.67E+04 2.49E+05 4.29E+06 6.86E+07 1.09E+09

Acc amp 0.729 0.192 0.042 0.016 0.0033 6.60E-05 1.19E-05 2.52E-06

Acc inf(E-04) 8.78 6.54 6.02 5.78 5.7 5.54 5.46 5.4

TABLE VII: Broken Array Multiplier

Design Name Data for Inaccurate [4:2] compressor based multiplier (Design 1)

Parameters 2 4 6 8 10 12 14

ER 0.58 0.893 0.96 0.995 0.999 1 1

MED 2.31 59.55 971.93 1.62E+04 2.59E+05 4.35E+06 6.78E+07

Acc amp 0.412 0.117 0.044 0.0065 0.0014 1.16E-04 2.72E-05

Acc inf(E-04) 7.7 6.59 6.08 5.1 5.56 5.43 5.36

TABLE VIII: Inaccurate [4:2] compressor multiplier(1)

Design Name Data for Inaccurate [4:2] compressor based multiplier (Design 2)

Parameters 2 4 6 8 10 12 14

Delay(ns) 10.0588 20.1175 30.1763 40.235 50.2938 60.3525 70.4113

Power(µW) 4.5469 9.0938 13.6407 18.1875 22.7343 27.2813 31.8281

Area (µm2) 30.9978 61.9955 92.99318 123.9909 154.9886 185.9863 216.984

Area (gates) 24 48 72 96 120 144 168

Area (transistors) 161 322 483 644 805 966 1127

ER 0.56 0.875 0.972 0.993 0.999 1 1

MED 2.26 52.1 967.3 1.57E+04 2.59E+05 4.27E+06 6.37E+07

Acc amp 0.44 0.13 0.0319 0.0085 1.40E-03 1.26E-04 2.88E-05

Acc inf(E-04) 7.81 6.71 6.04 5.72 5.58 5.38 5.43

TABLE IX: Inaccurate [4:2] compressor multiplier(2)

Design Name Data for Inaccurate [4 : 2] compressor based multiplier (Design 3)

Parameters 2 4 6 8 10 12 14

ER 0.55 0.881 0.977 0.991 1 1 1

MED 2.2 58.42 970.36 1.63E+04 2.56E+05 4.23E+06 6.89E+07

Acc amp 0.45 0.125 0.02741 0.0104 4.13E-04 1.37E-04 2.84E-05

Acc inf(E-04) 7.8 6.55 6.01 5.72 5.55 5.48 5.43

TABLE X: Inaccurate [4:2] compressor multiplier(3)

the minimum value is 5.28 × 10−4 for Datapath

complexity reduction approximate multiplier, for

its 16-bit multiplier. For the approx. compressor

based multiplier designs, all the designs show

almost the same results. The results follow the

order of Design 3, Design 2 and Design 1.

3) ER: The value of ER decreases as the bit width

increases and the value saturates to 1 at higher bit

widths. The least values of ERs are 0.054 for 2×2
Under Designed Multiplier and 0.262 for ACMA

Multiplier for their respective 2-bit multipliers. For

the approx. compressor based multiplier designs,

all the designs show almost the same results. Al-

though, Design 3 shows better results than Design

2 and Design 1, its ER reaches 1 for a 10 × 10
multiplier and the ERs of other two reach 1 only

at 11× 11 multiplier.

4) MED: For all the designs, the values of MED

lie in a very large interval. It is seen that for

higher bits (> 10), for each increment of 1 bit, the

value of MED increases by 10 times. Two unusual

observations are observed are:

• For error-tolerant multiplier, at a 6 × 6 bit

multiplier, MED reaches to a very low value

of 253.68 compared to other designs.

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 23,2020 at 02:25:40 UTC from IEEE Xplore. Restrictions apply.

• In broken array multiplier, also for 6 × 6 bit

multiplier, MED is rather larger value of 1020,

compared to other designs. For the approx.

compressor based multiplier designs, all the

designs show almost the same results. Design

3 shows the best result, followed by Design 2

and 1.

B. Circuit Characteristics:

Among the five categories presented, circuit char-

acteristics of five approximate multipliers from four

categories have been discussed. It is to be notified that

the circuit characteristics are evaluated by using the

TANNER EDA, software.

1) Delay: The delays of the designs are of the order

of (ns). Considering a 15-bit multiplier, largest

delay is observed in Broken Array Multiplier of

75.5906ns, while the smallest delay is observed in

Design 2 of approximate compressor based mul-

tipliers, of 75.446ns. Since, Datapath complexity

reduction approximate multiplier is designed from

2 × 2 Under Designed Multiplier, both have the

same delay, of 80.476ns for a 16-bit multiplier.

2) Power: The power consumptions are in the order

of (µW). Considering a 16-bit multiplier, largest

power consumption is observed in Broken Ar-

ray Multiplier of 50.0936µW , while the small-

est power consumption is observed in Datapath

complexity reduction approximate multiplier of

20.911µW . Power consumed in Design 2 of

approximate compressor based multipliers is also

very high of 34.1016µW .

3) Area : Area is measured according to three fac-

tors, area covered in (µm2), number of gates and

the number of transistors. For a 16-bit multiplier,

the largest number of gates and transistors are

used in Broken Array Multiplier, 252 and 1761
respectively. Similarly, for a 16-bit multiplier, the

smallest number of gates and transistors are used in

Datapath complexity reduction approximate multi-

plier, 99 and 658 respectively. In terms of area cov-

ered, Datapath complexity reduction approximate

multiplier covers the least area of 123.2874µm2

for a 16-bit multiplier, followed by 2 × 2 Under

Designed Multiplier with an area of 125.222µm2,

while the largest area covered by Broken Array

Multiplier, with an area of 348.054µm2 for a 16-

bit multiplier.

IV. DISCUSSION AND CONCLUSION:

In this paper, approx. multipliers are reviewed; their

error and circuit characteristics are evaluated. Based on

accuracy, the category of approx. error tolerant mul-

tipliers provide the best results; the two best designs

will be Error tolerant Multiplier and 2 × 2 Under

Designed Multiplier. For the lower bit multipliers, the

design provided by 2 × 2 Under Designed Multiplier

is very effective. But for higher bit multiplier structure,

Error tolerant Multiplier provides a better performance.

Based on circuit characteristics, the smallest delay is

observed in the Design 2 of approximate compressor

based multipliers, but its power consumption and area

covered is pretty high. The least power consumed and

area covered design is in Datapath complexity reduction

approximate multiplier. Its delay is also not that large,

so it is the best design based on circuit characteristics.

REFERENCES

[1] J. Liang, J. Han, and F. Lombardi, “New metrics for the reliabil-

ity of approximate and probabilistic adders,” IEEE Transactions

on Computers, vol. 62, no. 9, pp. 1760–1771, Sep. 2013.

[2] C. Lin and I. Lin, “High accuracy approximate multiplier with

error correction,” in 2013 IEEE 31st International Conference

on Computer Design (ICCD), Oct 2013, pp. 33–38.

[3] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for

power with an underdesigned multiplier architecture,” in 2011

24th Internatioal Conference on VLSI Design, Jan 2011, pp.

346–351.

[4] M. Vasudevan and C. Chakrabarti, “Image processing using

approximate datapath units,” in 2014 IEEE International Sym-

posium on Circuits and Systems (ISCAS), June 2014, pp. 1544–

1547.

[5] Khaing Yin Kyaw, Wang Ling Goh, and Kiat Seng Yeo, “Low-

power high-speed multiplier for error-tolerant application,” in

2010 IEEE International Conference of Electron Devices and

Solid-State Circuits (EDSSC), Dec 2010, pp. 1–4.

[6] K. Bhardwaj and P. S. Mane, “Acma: Accuracy-configurable

multiplier architecture for error-resilient system-on-chip,” in

2013 8th International Workshop on Reconfigurable and

Communication-Centric Systems-on-Chip (ReCoSoC), July

2013, pp. 1–6.

[7] H. Ko and S. Hsiao, “Design and application of faithfully

rounded and truncated multipliers with combined deletion,

reduction, truncation, and rounding,” IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 58, no. 5, pp. 304–

308, May 2011.

[8] Jer Min Jou and Shiann Rong Kuang, “Design of low-error

fixed-width multiplier for dsp applications,” Electronics Letters,

vol. 33, no. 19, pp. 1597–1598, Sep. 1997.

[9] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas,

“Bio-inspired imprecise computational blocks for efficient vlsi

implementation of soft-computing applications,” IEEE Transac-

tions on Circuits and Systems I: Regular Papers, vol. 57, no. 4,

pp. 850–862, April 2010.

[10] Weste, H. Neil H.E., and D. M. USA: Pearson, 2010, p. 486.

[11] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design

and analysis of approximate compressors for multiplication,”

IEEE Transactions on Computers, vol. 64, no. 4, pp. 984–994,

April 2015.

[12] J. N. Mitchell, “Computer multiplication and division using

binary logarithms,” IRE Transactions on Electronic Computers,

vol. EC-11, no. 4, pp. 512–517, Aug 1962.

Authorized licensed use limited to: Swinburne University of Technology. Downloaded on May 23,2020 at 02:25:40 UTC from IEEE Xplore. Restrictions apply.

