Sample Paper-02

Mathematics

Class - XI

Answers

Section A

1. Solution

$x=a+i b$
$|x|+x=\sqrt{a^{2}+b^{2}}+a+i b$
$\sqrt{a^{2}+b^{2}}+a=2$
$a^{2}+b^{2}=(2-a)^{2}$
$b=1$
$a^{2}+1=4+a^{2}-4 a$
$a=\frac{3}{4}$
$x=\frac{3}{4}+i$

2. Solution

$$
\begin{aligned}
& S=1+3+5+\cdots \cdot \\
& S=\frac{n}{2}[2+(n-1)(2)] \\
& S=n^{2}
\end{aligned}
$$

3. Solution

First term $=5$
Sum of first and second term $=14$
Second term= 9
Common Difference $=9-5=4$
$\mathrm{n}^{\text {th }}$ term $=5+(n-1) 4$
$=4 n+1$

4. Solution

Length of latus rectum of the ellipse $=\frac{2 a^{2}}{b}$

Section B

5. Solution

$$
f(x+5)=5
$$

6. Solution

The number of weights that can be measured = number of subsets can be formed excluding the null set

$$
2^{4}-1=15
$$

7. Solution

Let
$n=1$
Then $n(n+1)(2 n+1)=6$ and divisible by 6
Let it be divisible by 6 for

$$
n=m
$$

Then

$$
m(m+1)(2 m+1)=6 k \text { Where } k \text { is an integer }
$$

For $n=m+1$ the expression is

$$
\begin{aligned}
& (m+1)(m+2)(2 m+2+1)=(m+2)(m+1)(2 m+1)+2(m+1)(m+2) \\
& =m(m+1)(2 m+1)+2(m+1)(2 m+1)+2(m+1)(m+2) \\
& =m(m+1)(2 m+1)+2(m+1)(3 m+3) \\
& =m(m+1)(2 m+1)+6(m+1)^{2} \\
& =6 k+6(m+1)^{2}, \text { This is divisible by } 6
\end{aligned}
$$

8. Solution

$1-2 \sin ^{2} x-5 \sin x-3=0$
$2 \sin ^{2} x+5 \sin x+2=0$
Let $\sin x=t$
Then, $2 t^{2}+5 t+2=0$
Solving this quadratic

$$
\begin{aligned}
& 2 t(t+2)+(t+2)=0 \\
& (2 t+1)(t+2)=0 \\
& t=-2, t=-\frac{1}{2} \\
& \sin x=\frac{-1}{2}
\end{aligned}
$$

First value of t is rejected as $\sin x$ should lie between $\left(\begin{array}{lll}-1 & \text { and } & 1\end{array}\right)$
General solution is $x=(-1)^{n+1} \frac{\pi}{6}+n \pi$

9. Solution

When
$m=0$
The given equation reduces to a first degree and it will have only one solution
Also when the discriminant is zero it will have only one solution
Discriminant is
$4(m+1)^{2}-4 m^{2} .4=0$
$4\left(m^{2}+1+2 m\right)-16 m^{2}=0$
On simplifying and solving,
$(m-1)(3 m+1)=0$
$m=1, m=-\frac{1}{3}$
Hence the three values of m for which the equation will have only one solution is $m=0, m=1, m=-\frac{1}{3}$

10. Solution

$$
\begin{aligned}
& A . P \quad a-d, a . a+d \\
& G P \quad \frac{b}{g}, b, b g \\
& a-d+a+a+d=3 a \\
& 3 a=126 \\
& a=42 \\
& a+b=76 \\
& b=34 \\
& a-d+\frac{b}{g}=85 \ldots(1) \\
& a+d+b g=84 \ldots(2) \\
& 2 a+\frac{b}{g}+b g=169 \\
& 34 g^{2}-85 g+34=0 \\
& g=\frac{85 \pm \sqrt{85^{2}-4 \times 34 \times 34}}{2 \times 34} \\
& g=2 \quad \text { or } \quad \frac{1}{2} \\
& \text { When } \quad g=2
\end{aligned}
$$

$$
\begin{aligned}
& 42-d+\frac{34}{2}=85 \\
& d=-26 \\
& a=42, \quad d=-26, \quad g=2, \quad b=34
\end{aligned}
$$

AP
$68,42,16$
GP
17, 34, 68
$m=1, m=-\frac{1}{3}$

11. Solution

$$
\begin{aligned}
& f(x+1)=4^{x+1} \\
& f(x)=4^{x} \\
& f(x+1)-f(x)=4^{x+1}-4^{x} \\
& =4^{x} .4-4^{x} \\
& =4^{x}(3) \\
& =3 f(x)
\end{aligned}
$$

12. Solution

$$
\begin{aligned}
& \log \frac{1+\frac{3 x+x^{3}}{1+3 x^{2}}}{1-\frac{3 x+x^{3}}{1+3 x^{2}}} \\
& =\log \frac{1+3 x^{2}+3 x+x^{3}}{1+3 x^{2}-3 x-x^{3}} \\
& =\log \frac{(1+x)^{3}}{(1-x)^{3}} \\
& =3 \log \frac{(1+x)}{(1-x)} \\
& =3 f(x)
\end{aligned}
$$

Section-C

13. Solution

$$
\sin (45+30)=\sin 45 \cos 30+\cos 45 \sin 30
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \times \frac{1}{2} \\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \\
& =\frac{\sqrt{6}+\sqrt{2}}{4}
\end{aligned}
$$

$$
\cos (45+30)=\cos 45 \cos 30-\sin 45 \sin 30
$$

$$
=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \times \frac{1}{2}
$$

$$
=\frac{\sqrt{3}-1}{2 \sqrt{2}}
$$

$$
=\frac{\sqrt{6}-\sqrt{2}}{4}
$$

14. Solution

$$
\begin{aligned}
& \frac{\sin 3 \theta}{\sin \theta}-\frac{\cos 3 \theta}{\cos \theta}=\frac{\sin 3 \theta \cos \theta-\cos 3 \theta \sin \theta}{\sin \theta \cos \theta} \\
& =\frac{\sin (3 \theta-\theta)}{\sin \theta \cos \theta} \\
& =\frac{2 \sin 2 \theta}{2 \sin \theta \cos \theta} \\
& =\frac{2 \sin 2 \theta}{\sin 2 \theta}=2
\end{aligned}
$$

15. Solution

$$
\begin{aligned}
& x^{2}+4(m x+1)^{2}=1 \\
& x^{2}+4\left(m^{2} x^{2}+2 m x+1\right)=1 \\
& x^{2}+4 m^{2} x^{2}+8 m x+4=1 \\
& x^{2}\left(1+4 m^{2}\right)+8 m x+3=0
\end{aligned}
$$

The line being a tangent , it touches the ellipse at two coincident points, and so Discriminant must be zero,

$$
\begin{aligned}
& (8 m)^{2}-4(3)\left(1+4 m^{2}\right)=0 \\
& 64 m^{2}-12-48 m^{2}=0 \\
& 16 m^{2}=12 \\
& m^{2}=\frac{12}{16} \\
& m^{2}=\frac{3}{4}
\end{aligned}
$$

16. Solution

Divide the equation by
$-\sqrt{3^{2}+-4^{2}}=-5$
Hence, $-\frac{3}{5} x+\frac{4}{5} y-4=0$
Where, $\cos \alpha=\frac{-3}{5}$ and $\sin \alpha=\frac{4}{5}$ and $p=4$

17. Solution

Multiply both numerator and denominator with $x-7$.Then denominator becomes a perfect square and it is always positive

Now

$$
(x+3)(x-7) \leq 0
$$

Critical points are
$(-3,7)$
Hence, $-3 \leq x<7$

18. Solution

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{x^{2}-a x+4}{3 x^{2}-b x+7}=\lim _{x \rightarrow \infty} \frac{x^{2}\left(1-\frac{a}{x}+\frac{4}{x^{2}}\right)}{x^{2}\left(3-\frac{b}{x}+\frac{7}{x^{2}}\right)} \\
& =\frac{1}{3}
\end{aligned}
$$

19. Solution

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\tan x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \times \frac{1}{\cos x} \times \frac{1}{\frac{3 \sin 3 x}{3 x}} \\
& =1 \times 1 \times \frac{1}{3}=\frac{1}{3}
\end{aligned}
$$

20. Solution:

$$
\begin{aligned}
& y=\sin x \\
& y+\Delta y=\sin (x+\Delta x) \\
& \Delta y=\sin (x+\Delta x)-y \\
& \Delta y=\sin (x+\Delta x)-\sin x \\
& \Delta y=2 \cos \frac{2 x+\Delta x}{2} \sin \frac{\Delta x}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\Delta y}{\Delta x}=\frac{2 \cos \frac{2 x+\Delta x}{2} \sin \frac{\Delta x}{2}}{\Delta x} \\
& \frac{\Delta y}{\Delta x}=\frac{\cos \frac{2 x+\Delta x}{2} \sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \\
& \lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\cos x \\
& \frac{d y}{d x}=\cos x
\end{aligned}
$$

Note: As $\quad \Delta x \rightarrow 0 ; \frac{\Delta x}{2}$ also $\rightarrow 0$

21. Solution:

The successive First order of difference is $4,7,10,13, \ldots$ this is an AP.
The second order difference is(Difference of the first difference) 3,3,3, ..
Third order difference (Difference of second order differences) is all 0
$n{ }^{\text {th }}$ term

$$
\begin{aligned}
& T_{n}=T_{1}+(n-1) \Delta T_{1}+\frac{(n-1)(n-2)}{2!} \Delta T_{2}+\frac{(n-1)(n-2)(n-3)}{3!} \Delta T_{3} \\
& =12+4(n-1)+3 \frac{(n-1)(n-2)}{2} \\
& =\frac{3 n^{2}-n+22}{2}
\end{aligned}
$$

$$
\text { Sum }=\frac{1}{2}\left(3 \Sigma n^{2}-\Sigma n+22 n\right)
$$

$$
=\frac{1}{2}\left(3 \frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}+22 n\right)
$$

$$
=\frac{1}{2}\left(n^{3}+n^{2}+22 n\right)
$$

22. Solution:

Let the point A be $\left(x_{1}, y_{1}\right)$ and B be $\left(x_{2}, y_{2}\right)$
Let the point C be a point be (x, y) on the circle
Then $A C$ and $B C$ are perpendicular
Product of Slopes of line AC and BC $=-1$

$$
\begin{aligned}
& \frac{y-y_{1}}{x-x_{1}} \cdot \frac{y-y_{2}}{x-x_{2}}=-1 \\
& \left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0
\end{aligned}
$$

23. Solution

x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\left\|\mathrm{x}_{\mathrm{i}}-9\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-9\right\|$
5	14	70	4	56
7	6	42	2	12
9	2	18	0	0
10	2	20	1	2
12	2	24	3	6
15	4	60	6	24
	$N=\Sigma f_{i}=26$	$\Sigma f_{i} x_{i}=234$		$f_{i} \Sigma\left\|x_{i}-9\right\|=100$

Mean $=\bar{X}=\frac{1}{N}\left(\Sigma f_{i} x_{i}\right)=\frac{234}{26}=9$
MeanDeviation $=M \cdot D=\frac{1}{N}\left(\Sigma f_{i}\left|x_{i}-9\right|\right)=\frac{100}{26}=3.84$

Section - D

24. Solution:

The odd digits $1,3,3,1$ can be arranged in their 4 places in $\frac{4!}{2!2!}$ ways
Even digits $2,4,2$ can be arranged in their 3 places in $\frac{3!}{2!}$
Hence the total number of arrangements $=\frac{4!}{2!2!} \times \frac{3!}{2!}=6 \times 3=18$ ways

25. Solution

Probability of one of them getting selected $P\left(E_{1} o r E_{2}\right)=1$ - (Probability of both getting selected + Probability of none getting selected)
$=1-\left[P\left(E_{1} \cap E_{2}\right)+P\left(E_{1}^{\prime} \cap E_{2}^{\prime}\right)\right]$
$=1-\left(\frac{1}{3} \times \frac{1}{5}+\frac{2}{3} \times \frac{4}{5}\right)$
$=1-\left(\frac{1}{15}+\frac{8}{15}\right)$
$=1-\frac{9}{15}=\frac{6}{15}=\frac{2}{5}$

26. Solution

Let A denote the set of numbers that are divisible by $2, \mathrm{~B}$ set of numbers that are divisible by $3, C$ set of numbers that are divisible by $5, D$ set of numbers that are divisible by both 2 and 3 , E set of numbers that are divisible by both 2 and $5, F$ set of numbers that are divisible by 3 and $5, G$ set of numbers that are divisible by all the three numbers

$$
\begin{aligned}
& a+(n-1) d=T_{n} \\
& n=\frac{T_{n}}{d}-\frac{a}{d}+1
\end{aligned}
$$

In this case $\frac{a}{d}=1$, Hence $n=$ integer part of $\frac{T_{n}}{d}$

$$
\begin{aligned}
& n(A)=\left[\frac{1000}{2}\right]=500 \\
& n(B)=\left[\frac{1000}{3}\right]=333 \\
& n(C)=\left[\frac{1000}{5}\right]=200 \\
& n(D)=\left[\frac{1000}{2 \times 3}\right]=166 \\
& n(E)=\left[\frac{1000}{2 \times 5}\right]=100 \\
& n(F)=\left[\frac{1000}{3 \times 5}\right]=66 \\
& n(G)=\left[\frac{1000}{2 \times 3 \times 5}\right]=33
\end{aligned}
$$

Numbers that are divisible by $2,3,5$ are

$$
\begin{aligned}
& n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cup B)-n(A \cup C)-n(B \cup C)+n(A \cap B \cap C) \\
& =500+333+200+1666+100+66+33 \\
& =734
\end{aligned}
$$

Numbers that are not divisible by $2,3,5$ are

$$
1000-734=266
$$

